def run(self): window = Queue() interpolation_count = 0 # if sampling frequency is given, convert to ms if self.samplingFreq is not None: self.samplingFreq /= 1000. while self.active: if len(self.inputQueue) != 0: dp = self.inputQueue.dequeue() # last data point if dp == 'end': self.outputQueue.enqueue('end') self.active = False return window.enqueue(dp) # convert unit G to m/s2 if self.convertG: dp.convertGtoAcc() # first data point if len(window) == 1: self.outputQueue.enqueue(dp) # middle data points if len(window) > 1: # convert times from ms to s time1 = window.queue[0].time time2 = window.queue[1].time # if no sampling frequency is given, use first two points to determine frequency if self.samplingFreq is None: self.samplingFreq = 1. / (time2 - time1) # Check how many interpolation points COULD lie in between the timestamps for i in range( int(math.ceil( (time2 - time1) * self.samplingFreq))): interp_time = interpolation_count / self.samplingFreq # If the interpolated time lies in this range, create the new data point and add it if time1 <= interp_time < time2: dp = linearInterp(window.queue[0], window.queue[1], interp_time) dp.a_norm = vctr.norm(dp.a) dp.g_norm = vctr.norm(dp.g) self.outputQueue.enqueue(dp) interpolation_count += 1 # Pop oldest element window.dequeue() else: time.sleep(0.05)
def run(self): window = Queue() while self.active: if len(self.inputQueue) != 0: dtp = self.inputQueue.dequeue() # Last point if dtp == 'end': # remove points left from midpoint for ii in range(len(window)): pop = window.dequeue() if pop.time > self.outputQueue[-1].time: self.outputQueue.enqueue(pop) self.outputQueue.enqueue('end') self.active = False return # remove GLOBAL_GRAVITY from acc_norm_smooth dtp.a_norm_smooth -= GLOBAL_GRAVITY window.enqueue(dtp) # enqueue first points to output if len(window) <= self.midPoint: self.outputQueue.enqueue(dtp) # compute if window midpoint is step if len(window) == self.windowSize: left = [] right = [] # divide the window in pre- and post datapoints for i in range(self.midPoint): left.append(window[i]) for i in range(self.midPoint, self.windowSize): right.append(window[i]) # check if window has a zero crossing in the middle if all(x.a_norm_smooth <= 0 for x in left) and all(x.a_norm_smooth > 0 for x in right): # datapoint directly AFTER zero crossing is step window[self.midPoint].isStep = True # enqueue midpoint to output queue self.outputQueue.enqueue(window[self.midPoint]) left.clear() right.clear() window.dequeue() else: time.sleep(0.05)
def run(self): window = Queue() while self.active: if len(self.inputQueue) != 0: dtp = self.inputQueue.dequeue() # last point if dtp == 'end': for _ in range(len(window)): pop = window.dequeue() if pop.q_local is None: pop.roll_pitch_yaw = quaternion_to_roll_pitch_yaw(self.q_global) pop.q_local = np.array([1,0,0,0]) pop.q_global = self.q_global self.outputQueue.enqueue(pop) self.outputQueue.enqueue('end') self.active = False return window.enqueue(dtp) # implement Kalman Filter below! # first point if len(window) == 1: dtp.q_local = np.array([1,0,0,0]) dtp.q_global = self.q_global dtp.roll_pitch_yaw = np.array([0,0,0]) # intermediate points else: # average gyro between two points and time in s (convert from ms) g_av = (window[1].g + window[0].g) / 2 dt = (window[1].time - window[0].time) / 1000 # compute local and global quaternion for single data point q_local = vctr.normalise(angular_rate_to_quaternion_rotation(g_av, dt)) self.q_global = vctr.normalise(quaternion_product(self.q_global, q_local)) roll_pitch_yaw = quaternion_to_roll_pitch_yaw(self.q_global) window[1].q_local = q_local window[1].q_global = self.q_global window[1].roll_pitch_yaw = roll_pitch_yaw # append oldest point to output queue pop = window.dequeue() self.outputQueue.enqueue(pop) else: time.sleep(0.05)
def run(self): window = Queue() while self.active: if len(self.inputQueue.queue) != 0: dtp = self.inputQueue.dequeue() # last point in queue if dtp == 'end': # add remaining data points to queue (these are not filtered) for ii in range(len(window)): pop = window.dequeue() pop.a_norm_smooth = pop.a_norm pop.g_norm_smooth = pop.g_norm self.outputQueue.enqueue(pop) self.outputQueue.enqueue('end') self.active = False return window.enqueue(dtp) # if window size is reached: if len(window.queue) == self.filterWindowSize: # Compute average of filter window and store in midpoint ssumAcc = 0 ssumGyr = 0 for i in range(self.filterWindowSize): ssumAcc += window[i].a_norm * self.filter_window[i] ssumGyr += window[i].g_norm * self.filter_window[i] window[self. midpoint].a_norm_smooth = ssumAcc / self.filter_sum window[self. midpoint].g_norm_smooth = ssumGyr / self.filter_sum # store midpoint in output queue self.outputQueue.enqueue(window[self.midpoint]) # dequeue oldest point in filter window window.dequeue() else: time.sleep(0.05)
def maxDiff(self): window = Queue() while True: if len(self.inputQueue) != 0: # Get next data point dp = self.inputQueue.dequeue() # Special case handling for end data point. if dp == 'end': self.intermediateQueue.enqueue('end') return # Add data point to list and queue window.enqueue(dp) # Once we reach the window size, do some processing! if len(window) == self.windowSize: # Calculate peak score midPoint = int(self.windowSize / 2) maxDiffLeft = -100 maxDiffRight = -100 # Find max difference on left for i in range(0, midPoint): value = window[midPoint].a_norm_smooth - window[ i].a_norm_smooth if value > maxDiffLeft: maxDiffLeft = value # Find max difference on right for i in range(midPoint + 1, len(window)): value = window[midPoint].a_norm_smooth - window[ i].a_norm_smooth if value > maxDiffRight: maxDiffRight = value # Calculate peak score and create a new point avg = (maxDiffRight + maxDiffLeft) / 2 window[midPoint].accNormNew = avg self.intermediateQueue.enqueue(window[midPoint]) window.dequeue()
def howMuch(self, arrival, departure, wage): time_converter = lambda x: datetime.strptime(x, '%H:%M:%S') arrival = map(time_converter, arrival) departure = map(time_converter, departure) q = Queue(zip(arrival, departure)) evening = datetime.strptime('18:00:00', '%H:%M:%S') morning = datetime.strptime('06:00:00', '%H:%M:%S') night_shifts = [] day_shifts = [] while not q.is_empty(): arr, dep = q.dequeue() if arr < morning and dep < morning: night_shifts.append((arr, dep)) elif arr < morning <= dep: night_shifts.append((arr, morning)) q.enqueue((morning, dep)) elif morning <= arr < evening and morning <= dep < evening: day_shifts.append((arr, dep)) elif arr < evening <= dep: day_shifts.append((arr, evening)) q.enqueue((evening, dep)) else: night_shifts.append((arr, dep)) pay = 0 pay += wage * sum(list(map(self.calculate_time_difference, day_shifts))) pay += wage * sum( list(map(self.calculate_time_difference, night_shifts))) * 1.5 return pay
def panTompkins(self): window = Queue() while True: if len(self.inputQueue) != 0: # Get next data point dp = self.inputQueue.dequeue() # Special case handling for end data point. if dp == 'end': self.intermediateQueue.enqueue('end') return # Add data point to list and queue window.enqueue(dp) # Once we reach the window size, do some processing! if len(window) == self.windowSize: midPoint = int(self.windowSize / 2) # Calculate mean of window ssum = 0 for i in range(0, self.windowSize): ssum += window[i].a_norm_smooth mean = ssum / self.windowSize new_mag = 0 if window[ midPoint].a_norm_smooth - mean < 0 else window[ midPoint].a_norm_smooth - mean # Square it. new_mag *= new_mag # Calculate peak score and create a new point window[midPoint].accNormNew = new_mag self.intermediateQueue.enqueue(window[midPoint]) window.dequeue()
def run(self): df = pd.read_csv(self.filename, delimiter=',') # convert absolute time to relative time in ms time_array = pd.to_datetime( df['loggingTime(txt)']).values.astype('datetime64[ms]') time_array = (time_array - time_array[0]).astype(int) # read in columns for gyro, acc and mag gyr = df[self.column_names_gyro].values acc = df[self.column_names_acc].values mag = df[self.column_names_mag].values # initial data points first_point = True a_i = 0 g_i = 0 m_i = 0 window = Queue() while self.active: for kk in range(time_array.size): a = acc[kk] g = gyr[kk] m = mag[kk] dp = dtp(time_array[kk], a, g, m) # last data point if kk == time_array.size - 1: a_final = window[a_i].a g_final = window[g_i].g m_final = window[m_i].m for dp in window: if pd.isna(dp.a[0]): dp.a = a_final if pd.isna(dp.g[0]): dp.g = g_final if pd.isna(dp.m[0]): dp.m = m_final dp.a_norm = vctr.norm(dp.a) dp.g_norm = vctr.norm(dp.g) self.outputQueue.enqueue(dp) self.outputQueue.enqueue('end') self.active = False break # first data point if first_point: if pd.isna(dp.a[0]): dp.a = np.array([0., 0., 0.]) if pd.isna(dp.g[0]): dp.g = np.array([0., 0., 0.]) if pd.isna(dp.m[0]): dp.m = np.array([0., 0., 0.]) first_point = False # intermediate datapoints window.enqueue(dp) if len(window) > 1: # per dataype: if latest dp has an updated value, interpolate intermediate dps and update index if not pd.isna(dp.a[0]): slope = (dp.a - window[a_i].a) / (dp.time - window[a_i].time) for ii in range(a_i + 1, len(window)): dt = window[ii].time - window[a_i].time window[ii].a = window[a_i].a + slope * dt a_i = len(window) - 1 if not pd.isna(dp.g[0]): slope = (dp.g - window[g_i].g) / (dp.time - window[g_i].time) for ii in range(g_i + 1, len(window)): dt = window[ii].time - window[g_i].time window[ii].g = window[g_i].g + slope * dt g_i = len(window) - 1 if not pd.isna(dp.m[0]): slope = (dp.m - window[m_i].m) / (dp.time - window[m_i].time) for ii in range(m_i + 1, len(window)): dt = window[ii].time - window[m_i].time window[ii].m = window[m_i].m + slope * dt m_i = len(window) - 1 # enqueue all datapoints below min index in window to the output queue min_i = min([a_i, g_i, m_i]) for _ in range(min_i): pop = window.dequeue() pop.a_norm = vctr.norm(pop.a) pop.g_norm = vctr.norm(pop.g) self.outputQueue.enqueue(pop) # recompute min indexes of window a_i -= min_i g_i -= min_i m_i -= min_i # if realtime = true, wait before next datapoint if (kk != 0) and self.realtime: time.sleep((time_array[kk] - time_array[kk - 1]) / 1000)
def run(self): # initial data points first_point = True a_i = 0 g_i = 0 m_i = 0 window = Queue() while self.active: if len(self.inputQueue) != 0: dp = self.inputQueue.dequeue() # last data point if dp == 'end': a_final = window[a_i].a g_final = window[g_i].g m_final = window[m_i].m for dp in window: if dp.a is None: dp.a = a_final if dp.g is None: dp.g = g_final if dp.m is None: dp.m = m_final dp.a_norm = vctr.norm(dp.a) dp.g_norm = vctr.norm(dp.g) self.outputQueue.enqueue(dp) self.outputQueue.enqueue('end') self.active = False break # first data point if first_point: if dp.a is None: dp.a = np.array([0., 0., 0.]) if dp.g is None: dp.g = np.array([0., 0., 0.]) if dp.m is None: dp.m = np.array([0., 0., 0.]) first_point = False # intermediate datapoints window.enqueue(dp) if len(window) > 1: # per dataype: if latest dp has an updated value, interpolate intermediate dps and update index if dp.a is not None: slope = (dp.a - window[a_i].a) / (dp.time - window[a_i].time) for ii in range(a_i + 1, len(window)): dt = window[ii].time - window[a_i].time window[ii].a = window[a_i].a + slope * dt a_i = len(window) - 1 if dp.g is not None: slope = (dp.g - window[g_i].g) / (dp.time - window[g_i].time) for ii in range(g_i + 1, len(window)): dt = window[ii].time - window[g_i].time window[ii].g = window[g_i].g + slope * dt g_i = len(window) - 1 if dp.m is not None: slope = (dp.m - window[m_i].m) / (dp.time - window[m_i].time) for ii in range(m_i + 1, len(window)): dt = window[ii].time - window[m_i].time window[ii].m = window[m_i].m + slope * dt m_i = len(window) - 1 # enqueue all datapoints below min index in window to the output queue min_i = min([a_i, g_i, m_i]) for _ in range(min_i): pop = window.dequeue() pop.a_norm = vctr.norm(pop.a) pop.g_norm = vctr.norm(pop.g) self.outputQueue.enqueue(pop) # recompute min indexes of window a_i -= min_i g_i -= min_i m_i -= min_i
def run(self): '''two windows: window is regular window that tracks if there are enough points, step_window tracks all points since last potential step. step_window resets if new step is detected''' window = Queue() step_window = Queue() while self.active: if len(self.inputQueue) != 0: dtp = self.inputQueue.dequeue() # Last point if dtp == 'end': # enqueue remaining part of step_window for ii in range(len(step_window)): pop = step_window.dequeue() self.outputQueue.enqueue(pop) # enqueue last data point of window self.outputQueue.enqueue(window[-1]) self.outputQueue.enqueue('end') self.active = False return window.enqueue(dtp) # first point if len(window) == 1: self.outputQueue.enqueue(dtp) # intermediate points if len(window) == 3: # Check for local peak AND above threshold if window[1].a_norm_smooth > max([ window[0].a_norm_smooth, window[2].a_norm_smooth, self.acc_threshold ]): # first step identified if not step_window[0].isStep: window[1].isStep = True # enqueue all points in step_window to output queue, empty step_window for ii in range(len(step_window)): pop = step_window.dequeue() self.outputQueue.enqueue(pop) # subsequent steps identified else: # check if dt > threshold if (window[1].time - step_window[0].time) > self.dt_threshold: window[1].isStep = True for ii in range(len(step_window)): pop = step_window.dequeue() self.outputQueue.enqueue(pop) # check if new acc norm > acc norm of previous step elif window[1].a_norm_smooth >= step_window[ 0].a_norm_smooth: window[1].isStep = True step_window[0].isStep = False for ii in range(len(step_window)): pop = step_window.dequeue() self.outputQueue.enqueue(pop) # otherwise false positive else: pass # enqueue middle data point to step_window step_window.enqueue(window[1]) # remove oldest point from window window.dequeue() else: time.sleep(0.05)
def run(self): window = Queue() walking_frequency = None non_walking_windows = 0 walking_time = 0 step_residual = 0 while self.active: if len(self.inputQueue) != 0: dtp = self.inputQueue.dequeue() # last point if dtp == 'end': # add remaining data points to queue for ii in range(len(window)): pop = window.dequeue() self.outputQueue.enqueue(pop) self.outputQueue.enqueue('end') self.active = False return window.enqueue(dtp) if len(window.queue) == self.window_size: # get most sensitive gyro axis: g_x = [x.g[0] for x in window] g_y = [x.g[1] for x in window] g_z = [x.g[2] for x in window] g_sum = [sum(abs(x) for x in g_x),sum(abs(x) for x in g_y),sum(abs(x) for x in g_z)] g_index = g_sum.index(max(g_sum)) g_target = [g_x, g_y, g_z][g_index] # FFT of target gyro and separate into w_0 (below min freq) and w_c (within range) f, w = self.fft(g_target) w_0 = w[f < self.freq_min] w_c = w[(f >= self.freq_min) & (f <= self.freq_max)] f_c = f[(f >= self.freq_min) & (f <= self.freq_max)] # First test: is there a higher average amplitude within range than below, and is this above 10 if np.average(w_c) > np.average([np.sum(w_0), self.w_threshold]): p, r = self.get_max_freq(f_c,w_c) if r.success: # update total time walked walking_time += self.sliding_distance_time # get/update walking frequency for current time window if walking_frequency is None: walking_frequency = r.x else: walking_frequency = self.smoothing_weight * walking_frequency + (1 - self.smoothing_weight) * r.x # determine steps within sliding distance interval step_residual, nr_of_steps = math.modf(2 * walking_frequency * self.sliding_distance_time + step_residual) step_position = int(self.sliding_distance / (2 * nr_of_steps)) for ii in range(int(nr_of_steps)): window[2*ii*step_position].isStep = True # else: # print('no walking freq found') else: if walking_frequency is not None: # MAX 1 windows without frequency to continue walking. After that, assume stop walking if non_walking_windows < self.max_non_walking_windows: # determine steps within sliding distance interval step_residual, nr_of_steps = math.modf(2 * walking_frequency * self.sliding_distance_time + step_residual) step_position = int(self.sliding_distance / (2 * nr_of_steps)) for ii in range(int(nr_of_steps)): window[2 * ii * step_position].isStep = True non_walking_windows += 1 else: walking_frequency = None step_residual = 0 non_walking_windows = 0 else: step_residual = 0 non_walking_windows = 0 for ii in range(self.sliding_distance): pop = window.dequeue() pop.g_norm = g_target[ii] pop.g_norm_smooth = g_target[ii] self.outputQueue.enqueue(pop) else: time.sleep(0.05)
class Brynes2016(threatStructure): def __init__(self, inputQueue, outputQueue): super(Brynes2016, self).__init__() self.target = self.run self.inputQueue = inputQueue self.outputQueue = outputQueue self.typ = 999 #max_diff self.windowSize = 5 self.threshold = 0 self.minNrOfPoints = 10 self.timeThreshold = 1 * 1000 # ms self.n = 0 self.mean = 0 self.std = 0 self.intermediateQueue = Queue() self.intermediateQueue2 = Queue() def run(self): # Part A: peak function: if self.typ == 'max_diff': self.maxDiff() elif self.typ == 'mean_diff': self.meanDiff() elif self.typ == 'pan_tompkins': self.panTompkins() else: raise Exception('Unknown peak scorer type: ' + self.typ) # Part B: Scoring function: self.peakDetect() # Part C: Post-processing self.postProcess() def maxDiff(self): window = Queue() while True: if len(self.inputQueue) != 0: # Get next data point dp = self.inputQueue.dequeue() # Special case handling for end data point. if dp == 'end': self.intermediateQueue.enqueue('end') return # Add data point to list and queue window.enqueue(dp) # Once we reach the window size, do some processing! if len(window) == self.windowSize: # Calculate peak score midPoint = int(self.windowSize / 2) maxDiffLeft = -100 maxDiffRight = -100 # Find max difference on left for i in range(0, midPoint): value = window[midPoint].a_norm_smooth - window[ i].a_norm_smooth if value > maxDiffLeft: maxDiffLeft = value # Find max difference on right for i in range(midPoint + 1, len(window)): value = window[midPoint].a_norm_smooth - window[ i].a_norm_smooth if value > maxDiffRight: maxDiffRight = value # Calculate peak score and create a new point avg = (maxDiffRight + maxDiffLeft) / 2 window[midPoint].accNormNew = avg self.intermediateQueue.enqueue(window[midPoint]) window.dequeue() def meanDiff(self): window = Queue() while True: if len(self.inputQueue) != 0: # Get next data point dp = self.inputQueue.dequeue() # Special case handling for end data point. if dp == 'end': self.intermediateQueue.enqueue('end') return # Add data point to list and queue window.enqueue(dp) # Once we reach the window size, do some processing! if len(window) == self.windowSize: # Calculate peak score midPoint = int(self.windowSize / 2) diffLeft = 0 diffRight = 0 # Find total difference on left for i in range(0, midPoint): value = window[midPoint].a_norm_smooth - window[ i].a_norm_smooth diffLeft += value # Find total difference on right for i in range(midPoint + 1, len(window)): value = window[midPoint].a_norm_smooth - window[ i].a_norm_smooth diffRight += value # Calculate peak score and create a new point avg = (diffLeft + diffRight) / (self.windowSize - 1) window[midPoint].accNormNew = avg self.intermediateQueue.enqueue(window[midPoint]) window.dequeue() def panTompkins(self): window = Queue() while True: if len(self.inputQueue) != 0: # Get next data point dp = self.inputQueue.dequeue() # Special case handling for end data point. if dp == 'end': self.intermediateQueue.enqueue('end') return # Add data point to list and queue window.enqueue(dp) # Once we reach the window size, do some processing! if len(window) == self.windowSize: midPoint = int(self.windowSize / 2) # Calculate mean of window ssum = 0 for i in range(0, self.windowSize): ssum += window[i].a_norm_smooth mean = ssum / self.windowSize new_mag = 0 if window[ midPoint].a_norm_smooth - mean < 0 else window[ midPoint].a_norm_smooth - mean # Square it. new_mag *= new_mag # Calculate peak score and create a new point window[midPoint].accNormNew = new_mag self.intermediateQueue.enqueue(window[midPoint]) window.dequeue() def peakDetect(self): while True: if len(self.intermediateQueue) != 0: # Get next data point dp = self.intermediateQueue.dequeue() # Special case handling for end data point. if dp == 'end': self.intermediateQueue2.enqueue('end') return # Update statistics self.n += 1 if self.n == 1: # First data point self.mean = dp.a_norm_smooth self.std = 0 elif self.n == 2: # Second data point o_mean = self.mean self.mean = (dp.a_norm_smooth + self.mean) / 2. self.std = math.sqrt( (math.pow(dp.a_norm_smooth - self.mean, 2) + math.pow(o_mean - self.mean, 2)) / 2) else: # Iteratively update mean and standard deviation o_mean = self.mean self.mean = (dp.a_norm_smooth + (self.n - 1) * self.mean) / self.n self.std = math.sqrt( ((self.n - 2) * math.pow(self.std, 2) / (self.n - 1)) + math.pow(o_mean - self.mean, 2) + math.pow(dp.a_norm_smooth - self.mean, 2) / self.n) if self.n > self.minNrOfPoints: # Check if we are above the threshold if (dp.a_norm_smooth - self.mean) > self.std * self.threshold: # Declare this a peak dp.isStep = True self.intermediateQueue2.enqueue(dp) def postProcess(self): self.windowQueue = Queue() while True: if len(self.intermediateQueue2) != 0: # Get next data point dp = self.intermediateQueue2.dequeue() # Special case handling for end data point. if dp == 'end': self.lastPoint(self.intermediateQueue2) return # If we have less than 2 points in the queue, just enqueue if dp.isStep: if len(self.windowQueue) == 0: self.windowQueue.enqueue(dp) # self.enqueue(dp) else: if (self.windowQueue[0].isStep): if (dp.time - self.windowQueue[0].time ) > self.timeThreshold: for ii in range(len(self.windowQueue)): pop = self.windowQueue.dequeue() self.outputQueue.enqueue(pop) elif dp.a_norm_smooth >= self.windowQueue[ 0].a_norm_smooth: self.windowQueue[0].isStep = False for ii in range(len(self.windowQueue)): pop = self.windowQueue.dequeue() self.outputQueue.enqueue(pop) else: dp.isStep = False else: for ii in range(len(self.windowQueue)): pop = self.windowQueue.dequeue() self.outputQueue.enqueue(pop) self.windowQueue.enqueue(dp) def lastPoint(self, window): # add remaining data points to queue for ii in range(len(window)): pop = window.dequeue() if pop.time > self.outputQueue[-1].time: self.outputQueue.enqueue(pop) self.outputQueue.enqueue('end')
def run(self): window = Queue() step_window = Queue() step_index = None while self.active: if len(self.inputQueue) != 0: dtp = self.inputQueue.dequeue() # last point if dtp == 'end': # confirm last step if step_index is not None: step_window[step_index].isStep = True # add remaining data points to queue for ii in range(len(step_window)): pop = step_window.dequeue() self.outputQueue.enqueue(pop) self.outputQueue.enqueue(window[-1]) self.outputQueue.enqueue('end') self.active = False return window.enqueue(dtp) # first point if len(window) == 1: self.outputQueue.enqueue(dtp) # intermediate points if len(window) == 3: self.accList.append(window[1].a_norm_smooth) # INSERT extra statement here to consider points only above a certain 'active' threshold if True: # window[1].accActive: # state: 'peak', 'valley' or 'none' state = self.detectState(window) if state == 'peak': # initial peak if self.state_prev == 'none': self.updatePeak(window[1]) # self.peaks.append(window[1]) # previous is valley AND new peak is above minimum time threshold elif (self.state_prev == 'valley') and ( window[1].time - self.dtp_peak.time > self.dt_peak): self.updatePeak(window[1]) self.updateMean() # previous is peak AND is within time threshold AND new peak has larger acc norm elif (self.state_prev == 'peak') \ and (window[1].time - self.dtp_peak.time <= self.dt_peak) \ and (window[1].a_norm_smooth > self.dtp_peak.a_norm_smooth): self.updatePeak(window[1], replace=True) elif state == 'valley': # previous is peak AND initial valley if (self.state_prev == 'peak') and (self.dtp_valley is None): self.updateValley(window[1]) # potential step: store index in step_window step_index = len(step_window) #window[1].isStep = True self.updateMean() # previous is peak AND new valley is above minimum time threshold elif (self.state_prev == 'peak') \ and (window[1].time - self.dtp_valley.time > self.dt_valley): self.updateValley(window[1]) # potential step: store index in step_window step_index = len(step_window) #window[1].isStep = True self.updateMean() # previous is valley AND is within time threshold AND new valley has lower acc norm elif (self.state_prev == 'valley') \ and (window[1].time - self.dtp_valley.time <= self.dt_valley) \ and (window[1].a_norm_smooth < self.dtp_valley.a_norm_smooth): # change potential step index: step_index = len(step_window) self.updateValley(window[1], replace=True) # compute standard deviation of acc: self.std = np.std(np.array(self.accList)) # add data point to the step window step_window.enqueue(window[1]) # if there is a potential step if step_index is not None: # if last valley is > time threshold, confirm step if window[1].time - step_window[ step_index].time > self.dt_valley: step_window[step_index].isStep = True # append all data point up to and including step to output queue for ii in range(step_index + 1): pop = step_window.dequeue() self.outputQueue.enqueue(pop) step_index = None # print(self.mean, self.std, self.dt_peak, self.dt_valley) # reset counter if there has been no activity for some time if window[ 1].time - self.time_last_peak_or_valley > self.dt_max: self.resetParams() window.dequeue() else: time.sleep(0.05)