def optimization(infer, regularizer, rate_batch, learning_rate=0.001, reg=0.1, device="/cpu:0"): global_step = tf.train.get_global_step() assert global_step is not None with tf.device(device): cost_l2 = tf.nn.l2_loss(tf.subtract(infer, rate_batch)) penalty = tf.constant(reg, dtype=tf.float32, shape=[], name="l2") cost = tf.add(cost_l2, tf.multiply(regularizer, penalty)) train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost, global_step=global_step) return cost, train_op
from src import tensorflow as tf a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16) add = tf.add(a, b) mul = tf.multiply(a, b) with tf.Session() as sess: # Run every operation with variable input print("Addition with variables: %i" % sess.run(add, feed_dict={ a: 2, b: 3 })) print("Multiplication with variables: %i" % sess.run(mul, feed_dict={ a: 2, b: 3 })) # output: # Addition with variables: 5 # Multiplication with variables: 6 matrix1 = tf.constant([[3., 3.]]) matrix2 = tf.constant([[2.], [2.]]) product = tf.matmul(matrix1, matrix2) with tf.Session() as sess: result = sess.run(product) print(result) #result: # 12
# We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch.
from src import tensorflow as tf a = tf.constant(1.0, name="a") sess = tf.Session() print(sess.run(a)) sess.close() with tf.Session() as sess: print(sess.run(a))
def _conv_layer(input, weights, bias): conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1), padding='SAME') return tf.nn.bias_add(conv, bias)
from src import tensorflow as tf a = tf.constant('hello, TensorFlow!') with tf.Session() as sess: print(sess.run(a)) writer = tf.summary.FileWriter("/log",tf.get_default_graph()) writer.close()
from src import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello))
from src import tensorflow as tf node1 = tf.constant(3.0, dtype=tf.float32) node2 = tf.constant(4.0) # also tf.float32 implicitly print(node1, node2) # Tensor("Const:0", shape=(), dtype=float32) Tensor("Const_1:0", shape=(), dtype=float32) sess = tf.Session() print(sess.run([node1,node2])) #[3.0, 4.0] node3 = tf.add(node1,node2) print(node3) # Tensor("Add:0", shape=(), dtype=float32) print(sess.run(node3)) # 7.0 a = tf.placeholder(tf.float32) b = tf.placeholder(tf.float32) adder_node = a+b print(sess.run(adder_node,{a:3,b:4})) #7.0 print(sess.run(adder_node,{a:[1,2],b:[3,4]})) #[ 4. 6.] add_and_triple = a*3 print(sess.run(add_and_triple,{a:5})) #15.0 print(sess.run(add_and_triple,{a:[1,2]})) #[ 3. 6.] W = tf.Variable([.3],dtype=tf.float32) b = tf.Variable([-.3],dtype=tf.float32) x = tf.placeholder(tf.float32) linear_model = W*x + b init = tf.global_variables_initializer() sess.run(init) # 这个时候变量才会被初始化 print(sess.run(linear_model, {x:[1,2,3,4]}))
from src import tensorflow as tf a = tf.constant(1.0, name="a") b = tf.constant([1.0, 2.0], name="b") c = tf.constant([[1.0, 2.0], [1.0, 2.0]], name="c") print(a) print(b) print(c) sess = tf.Session() print(sess.run(a)) print(sess.run(b)) print(sess.run(c)) writer = tf.summary.FileWriter("/log", tf.get_default_graph()) writer.close()
from src import tensorflow as tf with tf.name_scope("input1"): input1 = tf.constant([1.0, 2.0, 3.0], name="input1") with tf.name_scope("input2"): input2 = tf.Variable(tf.random_uniform([3]), name="input2") output = tf.add_n([input1, input2], name="add") writer = tf.summary.FileWriter("/log", tf.get_default_graph()) writer.close()
from src import tensorflow as tf w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1)) x = tf.constant([[0.7, 0.9]]) a = tf.matmul(x, w1) y = tf.matmul(a, w2) with tf.Session() as sess: # sess.run(w1.initializer) # sess.run(w2.initializer) sess.run(tf.initialize_all_variables()) print(sess.run(y))
from src import tensorflow as tf a = tf.constant(2) b = tf.constant(3) with tf.Session() as sess: print("a=2, b=3") print("Addition with constants: %i" % sess.run(a+b)) print("Multiplication with constants: %i" % sess.run(a*b)) print(tf.get_default_graph()) writer = tf.summary.FileWriter("/log",tf.get_default_graph()) writer.close()