def usenix_embed(
        load_dataset_func,  # Which dataset to choose. Should return training and testing data
        dataset_label,  # Label of the dataset (for caching)
        model,  # Model specification
        owner_data_size=35000,  # Training data that belongs to the owner
        total_data_size=100000,  # Total training data with augmentation
        key_length=35,  # How many watermark samples to train on
        wm_boost_factor=100,  # How many watermark samples to test on
        epochs=7,  # Total number of epochs
        batchsize=64,
        cache_embed_wm=None,  # Filepath to save model
        verbose=True):
    """ Embeds a watermark with the USENIX watermark method
    """
    if verbose:
        print("[1/3] USENIX Watermark Embedding: Loading {} data".format(
            dataset_label))
        print(
            "      Generating {} data samples with augmentation from {} owner samples."
            .format(total_data_size, owner_data_size))
    # Add dataset label to each cache name
    cache_embed_wm, = concat_labels_if_not_none([cache_embed_wm],
                                                dataset_label)

    (all_x, all_y), test_data = load_dataset_func()
    all_x, all_y = shuffle(all_x, all_y)

    # Assign training and test data
    owner_data, loaded_from_cache = augment_data(
        set_to_augment=(all_x[:owner_data_size], all_y[:owner_data_size]),
        prefix=dataset_label,
        total_size=total_data_size,
        batchsize=batchsize,
        use_cached_training_data="embed_no_attacker_data",
        verbose=verbose)

    if verbose:
        print("[3/3] Training the watermark model")

    wm_model, history, trigger = embed_wm(
        model=model,
        epochs=epochs,
        key_length=key_length,
        train_data=owner_data,
        trigger_set=load_wm_images_usenix(imgsize=all_x[0].shape),
        test_data=test_data,
        wm_boost_factor=wm_boost_factor,
        batchsize=batchsize,
        cache_embed_wm=cache_embed_wm,
        verbose=False)
    return wm_model, history, trigger
示例#2
0
def adversarial_whitebox(
        load_dataset_func,  # Which dataset to choose. Should return training and testing data
        dataset_label,  # Label of the dataset (for caching)
        load_wm_model_func,  # Model for wm_embedding (needs params {"reg","optimizer","freeze_first_layers"})
        wm_embed_func,
        owner_data_size=30000,
        total_owner_data_size=30000,
        attacker_data_size=15000,
        attacker_data_size_reg=10000,
        total_attacker_data_size=15000,
        epochs_reg=30,  #30
        epochs_surr=10,  #10
        early_stopping_wm_reg=0.2,  # At which watermark accuracy to stop the whitebox attack
        patience_reg=2,
        lr_surr=0.001,  # Learning rate for the surrogate model
        freeze_first_layers=0,  # How many layers to freeze for surrogate model
        reg_whitebox=0.003,
        reg_surr=0.0,
        batchsize_embed=64,
        batchsize_reg=64,
        batchsize_surr=64,
        wm_class=5,
        cache_embed_wm=None,
        cache_reg_model=None,
        cache_surr_model=None,
        verbose=False,
        fine_tuning=True,
        weight_path='../../tmp/mnist_cnn_weights.hdf5',
        cluster=False):
    sess = tf.Session()
    K.set_session(sess)

    cache_embed_wm, cache_reg_model, cache_surr_model, = concat_labels_if_not_none(
        [cache_embed_wm, cache_reg_model, cache_surr_model], dataset_label)

    (all_x, all_y), test_data = load_dataset_func()

    if owner_data_size + attacker_data_size > len(all_x):
        raise RuntimeError(
            "Whitebox Attack data error! Trying to consume more training data than there is available!"
            " {}>{}".format(owner_data_size + attacker_data_size, len(all_x)))

    owner_data, owner_data_from_cache = augment_data(
        set_to_augment=(all_x[:owner_data_size], all_y[:owner_data_size]),
        prefix=dataset_label,
        total_size=total_owner_data_size,
        use_cached_training_data="owner_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)
    attacker_data, attacker_data_from_cache = augment_data(
        set_to_augment=(all_x[owner_data_size:owner_data_size +
                              attacker_data_size],
                        all_y[owner_data_size:owner_data_size +
                              attacker_data_size]),
        prefix=dataset_label,
        total_size=total_attacker_data_size,
        use_cached_training_data="attacker_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)

    # Make sure to always regenerate both files if necessary
    if owner_data_from_cache != attacker_data_from_cache:
        raise RuntimeError(
            "Whitebox Attack data error! Sets are not mutually exclusive, please delete conflicting "
            "file ending in '{}'!".format(
                str(total_owner_data_size) + str(total_attacker_data_size)))

    wm_model, history_embed, trigger = wm_embed_func(
        load_wm_model_func(),
        owner_data[0],
        owner_data[1],
        test_data[0],
        test_data[1],
        sess,
        fine_tuning=fine_tuning,
        load_wm_model_func=load_wm_model_func)

    pred_y = wm_model.predict(attacker_data[0])
    attacker_data = attacker_data[0], pred_y
    attacker_data_reg = (attacker_data[0][:attacker_data_size_reg],
                         attacker_data[1][:attacker_data_size_reg])

    additional_callbacks2 = [
        ShowErrorsCallback(dataset=trigger["keys"], prefix="WB Trigger")
    ]
    surr_model_reg, reg_history = whitebox_attack(
        wm_model=wm_model,
        load_model_func=load_wm_model_func,
        load_func_kwargs={"reg": reg_whitebox},
        load_func_kwargs2={
            "reg": reg_surr,
            "optimizer": RMSprop(lr=lr_surr),
            "freeze_first_layers": freeze_first_layers
        },
        trigger_set=trigger,
        train_data=attacker_data_reg,
        test_data=test_data,
        batchsize=batchsize_reg,
        epochs_reg=epochs_reg,
        additional_callbacks=additional_callbacks2,
        early_stopping_wm=early_stopping_wm_reg,  # When to stop
        patience=patience_reg,
        cache_surr_model=cache_reg_model,
        verbose=False,
        cluster=cluster)

    additional_callbacks_surr = [
        ShowErrorsCallback(dataset=trigger["keys"],
                           prefix="BB Trigger (Train)")
    ]

    # randomized blackbox
    # comment out if you do not want perform this on attacker data
    # random_selection = np.random.random_sample(attacker_data_size)
    # random_selection = (random_selection < 0.005).astype('int64')
    # random_target = np.random.randint(10, size=sum(random_selection))
    # random_index = np.where(random_selection == 1)[0]
    # attacker_data[1][random_index] = keras.utils.to_categorical(
    #     random_target, num_classes)
    # print(sum(random_selection), " attacker data is twisted...")

    surr_model, history_surr = blackbox_attack(
        surrogate_model=surr_model_reg,
        epochs_surr=epochs_surr,
        train_data=attacker_data,
        trigger_set=trigger,
        test_data=test_data,
        batchsize=batchsize_surr,
        additional_callbacks=additional_callbacks_surr,
        cache_surr_model=cache_surr_model,
        verbose=False,
        cluster=cluster)

    # After the black-box attack, try to embed the watermark again to further
    # reduce the old watermark retention.
    print("####################################################")
    print("Watermark retention BEFORE embeding new watermark...")
    print(surr_model.evaluate(trigger["keys"][0], trigger["keys"][1]))
    print(surr_model.evaluate(test_data[0], test_data[1]))
    print("####################################################")

    surr_model, history_embed, _ = wm_embed_func(
        surr_model,
        attacker_data[0],
        attacker_data[1],
        test_data[0],
        test_data[1],
        sess,
        fine_tuning=fine_tuning,
        load_wm_model_func=load_wm_model_func,
        retrain=False)

    print("####################################################")
    print("Watermark retention AFTER embeding new watermark...")
    print(surr_model.evaluate(trigger["keys"][0], trigger["keys"][1]))
    print(surr_model.evaluate(test_data[0], test_data[1]))
    print("####################################################")

    baseline_model1 = load_wm_model_func()
    baseline_model1.load_weights(weight_path)

    baseline_model2 = load_wm_model_func()
    baseline_model2.fit(attacker_data[0],
                        attacker_data[1],
                        batch_size=64,
                        epochs=5,
                        verbose=1,
                        validation_data=(test_data[0], test_data[1]))

    baseline_eval1 = baseline_model1.evaluate(trigger["keys"][0],
                                              trigger["keys"][1])[0]
    baseline_eval2 = baseline_model2.evaluate(trigger["keys"][0],
                                              trigger["keys"][1])[0]
    print("This is the baseline:", baseline_eval1)
    print("This is the baseline:", baseline_eval2)
    print(baseline_model1.evaluate(owner_data[0], owner_data[1]))

    baseline = (baseline_eval1 / 100, baseline_eval2 / 100)

    return surr_model, (history_embed, reg_history, history_surr, baseline)
def asiaccs_embed(
        load_dataset_func,  # Which dataset to choose. Should return training and testing data
        dataset_label,  # Label of the dataset (for caching)
        model,  # Model specification
        wm_type='gaussian',  # logo or gaussian for wm embedding
        owner_data_size=35000,  # Training data that belongs to the owner
        total_data_size=100000,  # Total training data with augmentation
        key_length=5000,  # How many watermark samples to train on
        key_length_test=1000,  # How many watermark samples to test on
        epochs=7,  # Total number of epochs
        batchsize=64,
        wm_class=5,  # Default class of watermark
        cache_embed_wm=None,  # Filepath to save model
        verbose=True):
    """ Embeds a watermark on CIFAR with one of the ASIACCS watermarks
    """
    if verbose:
        print("[1/3] {} Watermark Embedding ASIACCS: Loading {} data".format(
            wm_type, dataset_label))
        print(
            "      Generating {} data samples with augmentation from {} owner samples."
            .format(total_data_size, owner_data_size))
    # Add dataset label to each cache name
    cache_embed_wm, = concat_labels_if_not_none([cache_embed_wm],
                                                dataset_label)
    (all_x, all_y), test_data = load_dataset_func()

    # Assign training and test data
    owner_data, loaded_from_cache = augment_data(
        set_to_augment=(all_x[:owner_data_size], all_y[:owner_data_size]),
        prefix=dataset_label,
        total_size=total_data_size,
        batchsize=batchsize,
        use_cached_training_data="embed_no_attacker_data",
        verbose=verbose)

    if verbose:
        print("[2/3] Generating {} ASIACCS watermarked images".format(
            key_length))

    trigger = load_wm_images_asiaccs(type=wm_type,
                                     dataset=owner_data,
                                     wm_class=wm_class,
                                     n_size=key_length)
    trigger_test = load_wm_images_asiaccs(type=wm_type,
                                          dataset=test_data,
                                          wm_class=wm_class,
                                          n_size=key_length_test)

    if verbose:
        print("[3/3] Training the watermark model")

    additional_callbacks = [
        AdditionalValidationSets([(trigger_test[0], trigger_test[1],
                                   'watermark_new')])
    ]
    wm_model, history, trigger = embed_wm(
        model=model,
        epochs=epochs,
        key_length=key_length,
        train_data=owner_data,
        trigger_set=trigger,
        test_data=test_data,
        wm_boost_factor=1,
        batchsize=batchsize,
        additional_callbacks=additional_callbacks,
        cache_embed_wm=cache_embed_wm,
        verbose=False)
    return wm_model, history, trigger
def asiaccs_blackbox(
        load_dataset_func,  # Which dataset to choose. Should return training and testing data
        dataset_label,  # Label of the dataset (for caching)
        model,  # Model specification for wm_embedding
        surrogate_model,  # Model for blackbox attack
        wm_type='gaussian',  # logo or gaussian for wm embedding
        owner_data_size=25000,  # Data size of the owner
        total_owner_data_size=100000,  # Total data size of the owner with augmentation
        attacker_data_size=25000,  # Data size of the attacker
        total_attacker_data_size=100000,  # Total data size of the attacker with augmentation
        key_length=10000,  # How many keys to use for the embedding
        key_length_test=1000,  # How many keys to use for the testing
        epochs_embed=7,  # Train owners model
        epochs_surr=20,  # Train attackers model
        batchsize_embed=64,
        batchsize_surr=64,
        wm_class=5,
        cache_embed_wm=None,  # Filepath to store owners model & history
        cache_surr_model=None,  # Filepath to store attacker model & history
        verbose=True):
    """ Generates a watermarked surrogate model with the ASIACCS watermarking scheme
    """
    if verbose:
        print("[1/5] ({}) Blackbox Attack: Loading {} data".format(
            wm_type, dataset_label))
        print("      Owner data: {} Attacker Data: {}".format(
            total_owner_data_size, total_attacker_data_size))

    cache_embed_wm, cache_surr_model, = concat_labels_if_not_none(
        [cache_embed_wm, cache_surr_model], dataset_label)

    (all_x, all_y), test_data = load_dataset_func()

    if owner_data_size + attacker_data_size > len(all_x):
        raise RuntimeError(
            "Blackbox Attack data error! Trying to consume more training data than there is available!"
            " {}>{}".format(owner_data_size + attacker_data_size, len(all_x)))

    # Assure owner data and attacker data are mutually exclusive!
    owner_data, owner_data_from_cache = augment_data(
        set_to_augment=(all_x[:owner_data_size], all_y[:owner_data_size]),
        prefix=dataset_label,
        total_size=total_owner_data_size,
        use_cached_training_data="owner_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)
    attacker_data, attacker_data_from_cache = augment_data(
        set_to_augment=(all_x[owner_data_size:owner_data_size +
                              attacker_data_size],
                        all_y[owner_data_size:owner_data_size +
                              attacker_data_size]),
        prefix=dataset_label,
        total_size=total_attacker_data_size,
        use_cached_training_data="attacker_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)

    # Make sure to always regenerate both files if necessary
    if owner_data_from_cache != attacker_data_from_cache:
        raise RuntimeError(
            "Blackbox Attack data error! Sets are not mutually exclusive, please delete conflicting "
            "file ending in '{}'!".format(
                str(total_owner_data_size) + str(total_attacker_data_size)))

    if verbose:
        print(
            "[2/5] Generating ASIACCS watermarked images: Train({}) Test({})".
            format(key_length, key_length_test))

    trigger = load_wm_images_asiaccs(type=wm_type,
                                     dataset=owner_data,
                                     wm_class=wm_class,
                                     n_size=key_length)
    trigger_test = load_wm_images_asiaccs(type=wm_type,
                                          dataset=test_data,
                                          wm_class=wm_class,
                                          n_size=key_length_test)

    if verbose:
        print("[3/5] Training the original model and embedding the watermark")

    additional_callbacks = [
        AdditionalValidationSets([(trigger_test[0], trigger_test[1],
                                   'watermark_new')]),
        ShowErrorsCallback(dataset=trigger, prefix="Embed Trigger (Train)"),
        ShowErrorsCallback(dataset=trigger_test, prefix="Embed Trigger (Test)")
    ]
    wm_model, history_embed, trigger = embed_wm(
        model=model,
        epochs=epochs_embed,
        key_length=key_length,
        train_data=owner_data,
        trigger_set=trigger,
        test_data=test_data,
        wm_boost_factor=1,
        batchsize=batchsize_embed,
        additional_callbacks=additional_callbacks,
        cache_embed_wm=cache_embed_wm,
        verbose=False)
    if verbose:
        print("    Evaluating accuracy on attacker data...",
              end="",
              flush=True)
        acc_on_attacker_data = wm_model.evaluate(attacker_data[0],
                                                 attacker_data[1])
        print(
            "    Done! Original discriminators accuracy on attackers data: {}".
            format(acc_on_attacker_data[1]))
        print("[4/5] Labeling the attackers data with the original model")

    pred_y = wm_model.predict(attacker_data[0])
    attacker_data = attacker_data[0], pred_y

    print("[5/5] Training the surrogate model")
    additional_callbacks_surr = [
        AdditionalValidationSets([(trigger_test[0], trigger_test[1],
                                   'watermark_new')]),
        ShowErrorsCallback(dataset=trigger, prefix="BB Trigger (Train)"),
        ShowErrorsCallback(dataset=trigger_test, prefix="BB Trigger (Test)")
    ]
    surr_model, history_surr = blackbox_attack(
        surrogate_model=surrogate_model,
        epochs_surr=epochs_surr,
        train_data=attacker_data,
        trigger_set=trigger,
        test_data=test_data,
        batchsize=batchsize_surr,
        additional_callbacks=additional_callbacks_surr,
        cache_surr_model=cache_surr_model,
        verbose=False)

    return surr_model, (history_embed, history_surr)
def asiaccs_whitebox(
        load_dataset_func,  # Which dataset to choose. Should return training and testing data
        dataset_label,  # Label of the dataset (for caching)
        load_wm_model_func,  # Model for wm_embedding (needs params {"reg","optimizer","freeze_first_layers"})
        wm_type='gaussian',  # logo or gaussian for wm embedding
        owner_data_size=35000,
        total_owner_data_size=100000,
        key_length=10000,
        key_length_test=1000,
        attacker_data_size=15000,
        attacker_data_size_reg=10000,
        total_attacker_data_size=15000,
        epochs_embed=1,
        epochs_reg=1,
        epochs_surr=1,
        early_stopping_wm_reg=0.1,  # At which watermark accuracy to stop the whitebox attack
        patience_reg=0,
        lr_surr=0.001,  # Learning rate for the surrogate model
        freeze_first_layers=0,  # How many layers to freeze for surrogate model
        reg_whitebox=0.0,
        reg_surr=0.0,
        batchsize_embed=64,
        batchsize_reg=64,
        batchsize_surr=64,
        wm_class=5,
        cache_embed_wm=None,
        cache_reg_model=None,
        cache_surr_model=None,
        verbose=True):
    """ Generates two mutually exclusive data sets for the owner and the attacker. Trains a watermarked model for the
        owner with the ASIACCS embedding. Then runs a regularization and a surrogate model attack with the attackers
        data.
    """
    if verbose:
        print("[1/6] ASIACCS ({}) Whitebox Attack: Loading {} data".format(
            wm_type, dataset_label))
        print("      Owner data: {} Attacker Data: {}".format(
            total_owner_data_size, total_attacker_data_size))
    cache_embed_wm, cache_reg_model, cache_surr_model, = concat_labels_if_not_none(
        [cache_embed_wm, cache_reg_model, cache_surr_model], dataset_label)

    (all_x, all_y), test_data = load_dataset_func()

    if owner_data_size + attacker_data_size > len(all_x):
        raise RuntimeError(
            "Whitebox Attack data error! Trying to consume more training data than there is available!"
            " {}>{}".format(owner_data_size + attacker_data_size, len(all_x)))

    # Assure owner data and attacker data are mutually exclusive!
    owner_data, owner_data_from_cache = augment_data(
        set_to_augment=(all_x[:owner_data_size], all_y[:owner_data_size]),
        prefix=dataset_label,
        total_size=total_owner_data_size,
        use_cached_training_data="owner_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)
    attacker_data, attacker_data_from_cache = augment_data(
        set_to_augment=(all_x[owner_data_size:owner_data_size +
                              attacker_data_size],
                        all_y[owner_data_size:owner_data_size +
                              attacker_data_size]),
        prefix=dataset_label,
        total_size=total_attacker_data_size,
        use_cached_training_data="attacker_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)

    # Make sure to always regenerate both files if necessary
    if owner_data_from_cache != attacker_data_from_cache:
        raise RuntimeError(
            "Whitebox Attack data error! Sets are not mutually exclusive, please delete conflicting "
            "file ending in '{}'!".format(
                str(total_owner_data_size) + str(total_attacker_data_size)))

    if verbose:
        print(
            "[2/6] Generating ASIACCS watermarked images: Train({}) Test({})".
            format(key_length, key_length_test))

    trigger = load_wm_images_asiaccs(type=wm_type,
                                     dataset=owner_data,
                                     wm_class=wm_class,
                                     n_size=key_length)

    trigger_test = load_wm_images_asiaccs(type=wm_type,
                                          dataset=test_data,
                                          wm_class=wm_class,
                                          n_size=key_length_test)

    print("(Debug) Asiaccs whitebox:")
    print("Owner: {}, Attacker: {}, test: {}, trigger: {}, trigger_test: {}".
          format(owner_data[0].mean(), attacker_data[0].mean(),
                 test_data[0].mean(), trigger[0].mean(),
                 trigger_test[0].mean()))
    if verbose:
        print("[3/6] Training the original model and embedding the watermark")

    additional_callbacks = [
        AdditionalValidationSets([(trigger_test[0], trigger_test[1],
                                   'watermark_new')]),
        ShowErrorsCallback(dataset=trigger, prefix="Embed Trigger (Train)"),
        ShowErrorsCallback(dataset=trigger_test, prefix="Embed Trigger (Test)")
    ]
    wm_model, history_embed, trigger = embed_wm(
        model=load_wm_model_func(),
        epochs=epochs_embed,
        key_length=key_length,
        train_data=owner_data,
        trigger_set=trigger,
        test_data=test_data,
        wm_boost_factor=1,
        batchsize=batchsize_embed,
        additional_callbacks=additional_callbacks,
        cache_embed_wm=cache_embed_wm,
        verbose=False)
    if verbose:
        print("    Evaluating accuracy on attacker data...",
              end="",
              flush=True)
        acc_on_attacker_data = wm_model.evaluate(attacker_data[0],
                                                 attacker_data[1])
        print("    Done! Accuracy and loss: {}".format(acc_on_attacker_data))
        print("[4/6] Labeling the attackers data with the original model")

    pred_y = wm_model.predict(attacker_data[0])
    attacker_data = attacker_data[0], pred_y
    attacker_data_reg = (attacker_data[0][:attacker_data_size_reg],
                         attacker_data[1][:attacker_data_size_reg])

    if verbose:
        print(
            "[5/6] Removing the watermark with the regularization attack.. {}".
            format(freeze_first_layers))

    additional_callbacks2 = [
        AdditionalValidationSets([(trigger_test[0], trigger_test[1],
                                   'watermark_new')]),
        ShowErrorsCallback(dataset=trigger, prefix="WB Trigger (Train)"),
        ShowErrorsCallback(dataset=trigger_test, prefix="WB Trigger (Test)")
    ]
    surr_model_reg, reg_history = whitebox_attack(
        wm_model=wm_model,
        load_model_func=load_wm_model_func,
        load_func_kwargs={"reg": reg_whitebox},
        load_func_kwargs2={
            "reg": reg_surr,
            "optimizer": RMSprop(lr=lr_surr),
            "freeze_first_layers": freeze_first_layers
        },
        trigger_set=trigger,
        train_data=attacker_data_reg,
        test_data=test_data,
        batchsize=batchsize_reg,
        additional_callbacks=additional_callbacks2,
        epochs_reg=epochs_reg,
        early_stopping_wm=early_stopping_wm_reg,  # When to stop
        patience=patience_reg,
        cache_surr_model=cache_reg_model,
        verbose=False)

    print("[6/6] Training the surrogate model")
    additional_callbacks_surr = [
        AdditionalValidationSets([(trigger_test[0], trigger_test[1],
                                   'watermark_new')]),
        ShowErrorsCallback(dataset=trigger, prefix="BB Trigger (Train)"),
        ShowErrorsCallback(dataset=trigger_test, prefix="BB Trigger (Test)")
    ]
    surr_model, history_surr = blackbox_attack(
        surrogate_model=surr_model_reg,
        epochs_surr=epochs_surr,
        train_data=attacker_data,
        trigger_set=trigger,
        test_data=test_data,
        batchsize=batchsize_surr,
        additional_callbacks=additional_callbacks_surr,
        cache_surr_model=cache_surr_model,
        verbose=False)

    return surr_model, (history_embed, reg_history, history_surr)
示例#6
0
def countermark_blackbox(
        load_dataset_func,  # Function that loads the training and testing data
        model,  # Model specification for wm_embedding
        surrogate_model,  # Model specification for surrogate model training
        load_trigger_func,  # Function for loading the watermark set
        dataset_label="",  # Chosen label for the dataset (if caching is enabled)
        key_length=100,
        wm_boost_factor=100,
        owner_data_size=35000,
        total_owner_data_size=100000,
        attacker_data_size=15000,
        total_attacker_data_size=100000,
        epochs_embed=10,
        epochs_surr=20,
        batchsize_embed=64,
        batchsize_surr=64,
        cache_embed_wm=None,
        cache_surr_model=None,
        verbose=True):
    """ Generates a model that carries a COUNTERMARK watermark
        and a blackbox surrogate model that (hopefully) also carries the COUNTERMARK watermark
    """
    if verbose:
        print("[1/4] Fingerprint Blackbox Attack: Loading {} data".format(dataset_label))
        print("      Owner data: {} Attacker Data: {}".format(total_owner_data_size, total_attacker_data_size))

    cache_embed_wm, cache_surr_model, = concat_labels_if_not_none([cache_embed_wm, cache_surr_model], dataset_label)

    (all_x, all_y), test_data = load_dataset_func()

    if owner_data_size + attacker_data_size > len(all_x):
        raise RuntimeError("Blackbox Attack data error! Trying to consume more training data than there is available!"
                           " {}>{}".format(owner_data_size + attacker_data_size, len(all_x)))

    # Assure owner data and attacker data are mutually exclusive!
    owner_data, owner_data_from_cache = augment_data(
        set_to_augment=(all_x[:owner_data_size], all_y[:owner_data_size]),
        prefix=dataset_label,
        total_size=total_owner_data_size,
        use_cached_training_data="owner_data" + str(total_owner_data_size) + str(total_attacker_data_size),
        verbose=verbose)
    attacker_data, attacker_data_from_cache = augment_data(
        set_to_augment=(all_x[owner_data_size:owner_data_size + attacker_data_size],
                        all_y[owner_data_size:owner_data_size + attacker_data_size]),
        prefix=dataset_label,
        total_size=total_attacker_data_size,
        use_cached_training_data="attacker_data" + str(total_owner_data_size) + str(total_attacker_data_size),
        verbose=verbose)

    # Make sure to always regenerate both files if necessary
    if owner_data_from_cache != attacker_data_from_cache:
        raise RuntimeError("Blackbox Attack data error! Sets are not mutually exclusive, please delete conflicting "
                           "file ending in '{}'!".format(str(total_owner_data_size) + str(total_attacker_data_size)))

    if verbose:
        print("[2/4] Training the network with {} keys each repeated {} times)".format(key_length, wm_boost_factor))

    trigger = load_trigger_func()
    additional_callbacks = [ShowErrorsCallback(dataset=trigger, prefix="Embed Trigger")]
    wm_model, history_embed, trigger = embed_wm(model=model,
                                                epochs=epochs_embed,
                                                train_data=owner_data,
                                                trigger_set=trigger,
                                                test_data=test_data,
                                                key_length=key_length,
                                                wm_boost_factor=wm_boost_factor,
                                                batchsize=batchsize_embed,
                                                additional_callbacks=additional_callbacks,
                                                cache_embed_wm=cache_embed_wm,
                                                verbose=False)
    if verbose:
        print("    Evaluating accuracy on attacker data...", end="", flush=True)
        acc_on_attacker_data = wm_model.evaluate(attacker_data[0], attacker_data[1])
        print("    Done! Original discriminators accuracy on attackers data: {}".format(acc_on_attacker_data[1]))
        print("[3/4] Labeling the attackers data with the original model")

    pred_y = wm_model.predict(attacker_data[0])
    attacker_data = attacker_data[0], pred_y

    if verbose:
        print("[4/4] Training the surrogate model")

    additional_callbacks = [ShowErrorsCallback(dataset=trigger, prefix="BB Trigger")]
    surr_model, history_surr = blackbox_attack(surrogate_model=surrogate_model,
                                               epochs_surr=epochs_surr,
                                               trigger_set=trigger,
                                               train_data=attacker_data,
                                               test_data=test_data,
                                               batchsize=batchsize_surr,
                                               additional_callbacks=additional_callbacks,
                                               cache_surr_model=cache_surr_model,
                                               verbose=False)

    return surr_model, (history_embed, history_surr)
def usenix_whitebox(
        load_dataset_func,  # Which dataset to choose. Should return training and testing data
        dataset_label,  # Label of the dataset (for caching)
        load_wm_model_func,  # Model specification for wm_embedding
        owner_data_size=35000,
        total_owner_data_size=100000,
        key_length=35,
        wm_boost_factor=1000,
        attacker_data_size=15000,
        attacker_data_size_reg=10000,
        total_attacker_data_size=15000,
        epochs_embed=10,
        epochs_reg=30,
        epochs_surr=10,
        early_stopping_wm_reg=0.1,  # At which watermark accuracy to stop the whitebox attack
        patience_reg=2,
        lr_surr=0.001,  # Learning rate for the surrogate model
        freeze_first_layers=0,  # How many layers to freeze for surrogate model
        reg_whitebox=0.0,
        reg_surr=0.0,
        batchsize_embed=64,
        batchsize_reg=64,
        batchsize_surr=64,
        cache_embed_wm=None,
        cache_reg_model=None,
        cache_surr_model=None,
        verbose=True):
    """ Generates two mutually exclusive data sets for the owner and the attacker. Trains a watermarked model for the
        owner with the ASIACCS embedding. Then runs a regularization and a surrogate model attack with the attackers
        data.
    """
    if verbose:
        print("[1/5] USENIX Whitebox Attack: Loading {} data".format(
            dataset_label))
        print("      Owner data: {} Attacker Data: {}".format(
            total_owner_data_size, total_attacker_data_size))
    cache_embed_wm, cache_reg_model, cache_surr_model, = concat_labels_if_not_none(
        [cache_embed_wm, cache_reg_model, cache_surr_model], dataset_label)
    (all_x, all_y), test_data = load_dataset_func()

    if owner_data_size + attacker_data_size > len(all_x):
        raise RuntimeError(
            "Whitebox Attack data error! Trying to consume more training data than there is available!"
            " {}>{}".format(owner_data_size + attacker_data_size, len(all_x)))

    # Assure owner data and attacker data are mutually exclusive!
    owner_data, owner_data_from_cache = augment_data(
        set_to_augment=(all_x[:owner_data_size], all_y[:owner_data_size]),
        prefix=dataset_label,
        total_size=total_owner_data_size,
        use_cached_training_data="owner_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)
    attacker_data, attacker_data_from_cache = augment_data(
        set_to_augment=(all_x[owner_data_size:owner_data_size +
                              attacker_data_size],
                        all_y[owner_data_size:owner_data_size +
                              attacker_data_size]),
        prefix=dataset_label,
        total_size=total_attacker_data_size,
        use_cached_training_data="attacker_data" + str(total_owner_data_size) +
        str(total_attacker_data_size),
        verbose=verbose)

    # Make sure to always regenerate both files if necessary
    if owner_data_from_cache != attacker_data_from_cache:
        raise RuntimeError(
            "Whitebox Attack data error! Sets are not mutually exclusive, please delete conflicting "
            "file ending in '{}'!".format(
                str(total_owner_data_size) + str(total_attacker_data_size)))

    if verbose:
        print(
            "[2/5] Training the network with {} keys each repeated {} times)".
            format(key_length, wm_boost_factor))

    trigger = load_wm_images_usenix(imgsize=all_x[0].shape)
    additional_callbacks = [
        ShowErrorsCallback(dataset=trigger, prefix="Embed Trigger")
    ]
    wm_model, history_embed, trigger = embed_wm(
        model=load_wm_model_func(),
        epochs=epochs_embed,
        key_length=key_length,
        train_data=owner_data,
        trigger_set=trigger,
        test_data=test_data,
        wm_boost_factor=wm_boost_factor,
        batchsize=batchsize_embed,
        additional_callbacks=additional_callbacks,
        cache_embed_wm=cache_embed_wm,
        verbose=False)
    if verbose:
        print("    Evaluating accuracy on attacker data...",
              end="",
              flush=True)
        acc_on_attacker_data = wm_model.evaluate(attacker_data[0],
                                                 attacker_data[1])
        print(
            "    Done! Original discriminators accuracy on attackers data: {}".
            format(acc_on_attacker_data[1]))
        print("[3/5] Labeling the attackers data with the original model")

    pred_y = wm_model.predict(attacker_data[0])
    attacker_data = attacker_data[0], pred_y
    attacker_data_reg = (attacker_data[0][0:attacker_data_size_reg],
                         attacker_data[1][0:attacker_data_size_reg])

    if verbose:
        print(
            "[4/5] Removing the watermark with the regularization attack.. {}".
            format(freeze_first_layers))

    additional_callbacks = [
        ShowErrorsCallback(dataset=trigger, prefix="WB Trigger")
    ]
    surr_model_reg, history_reg = whitebox_attack(
        wm_model=wm_model,
        load_model_func=load_wm_model_func,
        load_func_kwargs={"reg": reg_whitebox},
        load_func_kwargs2={
            "reg": reg_surr,
            "optimizer": RMSprop(lr=lr_surr),
            "freeze_first_layers": freeze_first_layers
        },
        trigger_set=trigger,
        train_data=attacker_data_reg,
        test_data=test_data,
        batchsize=batchsize_reg,
        epochs_reg=epochs_reg,
        early_stopping_wm=early_stopping_wm_reg,  # When to stop
        patience=patience_reg,
        additional_callbacks=additional_callbacks,
        cache_surr_model=cache_reg_model,
        verbose=False)

    if verbose:
        print("[5/5] Training the surrogate model")

    additional_callbacks = [
        ShowErrorsCallback(dataset=trigger, prefix="BB Trigger")
    ]
    surr_model, history_surr = blackbox_attack(
        surrogate_model=surr_model_reg,
        epochs_surr=epochs_surr,
        train_data=attacker_data,
        trigger_set=trigger,
        test_data=test_data,
        batchsize=batchsize_surr,
        additional_callbacks=additional_callbacks,
        cache_surr_model=cache_surr_model,
        verbose=False)

    return surr_model, (history_embed, history_reg, history_surr)