def set_default_parameters(): """ Loads and sets default parameters defined in DefaultConfig.py """ # Set default intrinsics CameraUtility.set_intrinsics_from_blender_params( DefaultConfig.fov, DefaultConfig.resolution_x, DefaultConfig.resolution_y, DefaultConfig.clip_start, DefaultConfig.clip_end, DefaultConfig.pixel_aspect_x, DefaultConfig.pixel_aspect_y, DefaultConfig.shift_x, DefaultConfig.shift_y, "FOV") CameraUtility.set_stereo_parameters( DefaultConfig.stereo_convergence_mode, DefaultConfig.stereo_convergence_distance, DefaultConfig.stereo_interocular_distance) # Init renderer RendererUtility.init() RendererUtility.set_samples(DefaultConfig.samples) addon_utils.enable("render_auto_tile_size") RendererUtility.toggle_auto_tile_size(True) # Set number of cpu cores used for rendering (1 thread is always used for coordination => 1 # cpu thread means GPU-only rendering) RendererUtility.set_cpu_threads(1) RendererUtility.set_denoiser(DefaultConfig.denoiser) RendererUtility.set_simplify_subdivision_render( DefaultConfig.simplify_subdivision_render) RendererUtility.set_light_bounces( DefaultConfig.diffuse_bounces, DefaultConfig.glossy_bounces, DefaultConfig.ao_bounces_render, DefaultConfig.max_bounces, DefaultConfig.transmission_bounces, DefaultConfig.transparency_bounces, DefaultConfig.volume_bounces)
def _configure_renderer(self, default_samples=256, use_denoiser=False, default_denoiser="Intel"): """ Sets many different render parameters which can be adjusted via the config. :param default_samples: Default number of samples to render for each pixel :param use_denoiser: If true, a denoiser is used, only use this on color information :param default_denoiser: Either "Intel" or "Blender", "Intel" performs much better in most cases """ RendererUtility.init() RendererUtility.set_samples( self.config.get_int("samples", default_samples)) if self.config.has_param("use_adaptive_sampling"): RendererUtility.set_adaptive_sampling( self.config.get_float("use_adaptive_sampling")) if self.config.get_bool("auto_tile_size", True): RendererUtility.toggle_auto_tile_size(True) else: RendererUtility.toggle_auto_tile_size(False) RendererUtility.set_tile_size(self.config.get_int("tile_x"), self.config.get_int("tile_y")) # Set number of cpu cores used for rendering (1 thread is always used for coordination => 1 # cpu thread means GPU-only rendering) RendererUtility.set_cpu_threads(self.config.get_int("cpu_threads", 1)) print('Resolution: {}, {}'.format( bpy.context.scene.render.resolution_x, bpy.context.scene.render.resolution_y)) RendererUtility.set_denoiser(None if not use_denoiser else self.config. get_string("denoiser", default_denoiser)) RendererUtility.set_simplify_subdivision_render( self.config.get_int("simplify_subdivision_render", 3)) RendererUtility.set_light_bounces( self.config.get_int("diffuse_bounces", 3), self.config.get_int("glossy_bounces", 0), self.config.get_int("ao_bounces_render", 3), self.config.get_int("max_bounces", 3), self.config.get_int("transmission_bounces", 0), self.config.get_int("transparency_bounces", 8), self.config.get_int("volume_bounces", 0)) RendererUtility.toggle_stereo(self.config.get_bool("stereo", False)) self._use_alpha_channel = self.config.get_bool('use_alpha', False)
rotation = np.random.uniform([1.0, 0, 0], [1.4217, 0, 6.283185307]) cam2world_matrix = MathUtility.build_transformation_mat(location, rotation) # Check that obstacles are at least 1 meter away from the camera and make sure the view interesting enough if CameraValidation.perform_obstacle_in_view_check(cam2world_matrix, {"min": 1.2}, bvh_tree) and \ CameraValidation.scene_coverage_score(cam2world_matrix) > 0.4 and \ floor.position_is_above_object(location): # Persist camera pose CameraUtility.add_camera_pose(cam2world_matrix) poses += 1 tries += 1 # activate distance rendering RendererUtility.enable_distance_output() # set the amount of samples, which should be used for the color rendering RendererUtility.set_samples(350) RendererUtility.set_light_bounces(max_bounces=200, diffuse_bounces=200, glossy_bounces=200, transmission_bounces=200, transparent_max_bounces=200) # render the whole pipeline data = RendererUtility.render() # post process the data and remove the redundant channels in the distance image data["depth"] = PostProcessingUtility.dist2depth(data["distance"]) del data["distance"] # write the data to a .hdf5 container WriterUtility.save_to_hdf5(args.output_dir, data)
def render(output_dir, temp_dir, get_forward_flow, get_backward_flow, blender_image_coordinate_style=False, forward_flow_output_file_prefix="forward_flow_", forward_flow_output_key="forward_flow", backward_flow_output_file_prefix="backward_flow_", backward_flow_output_key="backward_flow"): """ Renders the optical flow (forward and backward) for all frames. :param output_dir: The directory to write images to. :param temp_dir: The directory to write intermediate data to. :param get_forward_flow: Whether to render forward optical flow. :param get_backward_flow: Whether to render backward optical flow. :param blender_image_coordinate_style: Whether to specify the image coordinate system at the bottom left (blender default; True) or top left (standard convention; False). :param forward_flow_output_file_prefix: The file prefix that should be used when writing forward flow to a file. :param forward_flow_output_key: The key which should be used for storing forward optical flow values. :param backward_flow_output_file_prefix: The file prefix that should be used when writing backward flow to a file. :param backward_flow_output_key: The key which should be used for storing backward optical flow values. """ if get_forward_flow is False and get_backward_flow is False: raise Exception( "Take the FlowRenderer Module out of the config if both forward and backward flow are set to False!" ) with Utility.UndoAfterExecution(): RendererUtility.init() RendererUtility.set_samples(1) RendererUtility.set_adaptive_sampling(0) RendererUtility.set_denoiser(None) RendererUtility.set_light_bounces(1, 0, 0, 1, 0, 8, 0) FlowRendererUtility._output_vector_field(get_forward_flow, get_backward_flow, output_dir) # only need to render once; both fwd and bwd flow will be saved temporary_fwd_flow_file_path = os.path.join(temp_dir, 'fwd_flow_') temporary_bwd_flow_file_path = os.path.join(temp_dir, 'bwd_flow_') RendererUtility.render(temp_dir, "bwd_flow_", None) # After rendering: convert to optical flow or calculate hsv visualization, if desired for frame in range(bpy.context.scene.frame_start, bpy.context.scene.frame_end): # temporarily save respective vector fields if get_forward_flow: file_path = temporary_fwd_flow_file_path + "%04d" % frame + ".exr" fwd_flow_field = load_image( file_path, num_channels=4).astype(np.float32) if not blender_image_coordinate_style: fwd_flow_field[:, :, 1] = fwd_flow_field[:, :, 1] * -1 fname = os.path.join( output_dir, forward_flow_output_file_prefix) + '%04d' % frame forward_flow = fwd_flow_field * -1 # invert forward flow to point at next frame np.save(fname + '.npy', forward_flow[:, :, :2]) if get_backward_flow: file_path = temporary_bwd_flow_file_path + "%04d" % frame + ".exr" bwd_flow_field = load_image( file_path, num_channels=4).astype(np.float32) if not blender_image_coordinate_style: bwd_flow_field[:, :, 1] = bwd_flow_field[:, :, 1] * -1 fname = os.path.join( output_dir, backward_flow_output_file_prefix) + '%04d' % frame np.save(fname + '.npy', bwd_flow_field[:, :, :2]) # register desired outputs if get_forward_flow: Utility.register_output(output_dir, forward_flow_output_file_prefix, forward_flow_output_key, '.npy', '2.0.0') if get_backward_flow: Utility.register_output(output_dir, backward_flow_output_file_prefix, backward_flow_output_key, '.npy', '2.0.0')
def render(output_dir, temp_dir, used_attributes, used_default_values={}, file_prefix="segmap_", output_key="segmap", segcolormap_output_file_prefix="class_inst_col_map", segcolormap_output_key="segcolormap", use_alpha_channel=False, render_colorspace_size_per_dimension=2048): """ Renders segmentation maps for all frames. :param output_dir: The directory to write images to. :param temp_dir: The directory to write intermediate data to. :param used_attributes: The attributes to be used for color mapping. :param used_default_values: The default values used for the keys used in used_attributes. :param file_prefix: The prefix to use for writing the images. :param output_key: The key to use for registering the output. :param segcolormap_output_file_prefix: The prefix to use for writing the segmation-color map csv. :param segcolormap_output_key: The key to use for registering the segmation-color map output. :param use_alpha_channel: If true, the alpha channel stored in .png textures is used. :param render_colorspace_size_per_dimension: As we use float16 for storing the rendering, the interval of integers which can be precisely stored is [-2048, 2048]. As blender does not allow negative values for colors, we use [0, 2048] ** 3 as our color space which allows ~8 billion different colors/objects. This should be enough. """ with Utility.UndoAfterExecution(): RendererUtility.init() RendererUtility.set_samples(1) RendererUtility.set_adaptive_sampling(0) RendererUtility.set_denoiser(None) RendererUtility.set_light_bounces(1, 0, 0, 1, 0, 8, 0) # Get objects with meshes (i.e. not lights or cameras) objs_with_mats = get_all_blender_mesh_objects() colors, num_splits_per_dimension, used_objects = SegMapRendererUtility._colorize_objects_for_instance_segmentation( objs_with_mats, use_alpha_channel, render_colorspace_size_per_dimension) bpy.context.scene.cycles.filter_width = 0.0 if use_alpha_channel: MaterialLoaderUtility.add_alpha_channel_to_textures( blurry_edges=False) # Determine path for temporary and for final output temporary_segmentation_file_path = os.path.join(temp_dir, "seg_") final_segmentation_file_path = os.path.join( output_dir, file_prefix) RendererUtility.set_output_format("OPEN_EXR", 16) RendererUtility.render(temp_dir, "seg_", None) # Find optimal dtype of output based on max index for dtype in [np.uint8, np.uint16, np.uint32]: optimal_dtype = dtype if np.iinfo(optimal_dtype).max >= len(colors) - 1: break if 'class' in used_default_values: used_default_values['cp_category_id'] = used_default_values[ 'class'] if isinstance(used_attributes, str): # only one result is requested result_channels = 1 used_attributes = [used_attributes] elif isinstance(used_attributes, list): result_channels = len(used_attributes) else: raise Exception( "The type of this is not supported here: {}".format( used_attributes)) save_in_csv_attributes = {} # define them for the avoid rendering case there_was_an_instance_rendering = False list_of_used_attributes = [] # Check if stereo is enabled if bpy.context.scene.render.use_multiview: suffixes = ["_L", "_R"] else: suffixes = [""] # After rendering for frame in range( bpy.context.scene.frame_start, bpy.context.scene.frame_end): # for each rendered frame for suffix in suffixes: file_path = temporary_segmentation_file_path + ( "%04d" % frame) + suffix + ".exr" segmentation = load_image(file_path) print(file_path, segmentation.shape) segmap = Utility.map_back_from_equally_spaced_equidistant_values( segmentation, num_splits_per_dimension, render_colorspace_size_per_dimension) segmap = segmap.astype(optimal_dtype) used_object_ids = np.unique(segmap) max_id = np.max(used_object_ids) if max_id >= len(used_objects): raise Exception( "There are more object colors than there are objects" ) combined_result_map = [] there_was_an_instance_rendering = False list_of_used_attributes = [] used_channels = [] for channel_id in range(result_channels): resulting_map = np.empty( (segmap.shape[0], segmap.shape[1])) was_used = False current_attribute = used_attributes[channel_id] org_attribute = current_attribute # if the class is used the category_id attribute is evaluated if current_attribute == "class": current_attribute = "cp_category_id" # in the instance case the resulting ids are directly used if current_attribute == "instance": there_was_an_instance_rendering = True resulting_map = segmap was_used = True # a non default value was also used non_default_value_was_used = True else: if current_attribute != "cp_category_id": list_of_used_attributes.append( current_attribute) # for the current attribute remove cp_ and _csv, if present used_attribute = current_attribute if used_attribute.startswith("cp_"): used_attribute = used_attribute[len("cp_"):] # check if a default value was specified default_value_set = False if current_attribute in used_default_values or used_attribute in used_default_values: default_value_set = True if current_attribute in used_default_values: default_value = used_default_values[ current_attribute] elif used_attribute in used_default_values: default_value = used_default_values[ used_attribute] last_state_save_in_csv = None # this avoids that for certain attributes only the default value is written non_default_value_was_used = False # iterate over all object ids for object_id in used_object_ids: is_default_value = False # get the corresponding object via the id current_obj = used_objects[object_id] # if the current obj has a attribute with that name -> get it if hasattr(current_obj, used_attribute): used_value = getattr( current_obj, used_attribute) # if the current object has a custom property with that name -> get it elif current_attribute.startswith( "cp_" ) and used_attribute in current_obj: used_value = current_obj[used_attribute] elif current_attribute.startswith("cf_"): if current_attribute == "cf_basename": used_value = current_obj.name if "." in used_value: used_value = used_value[:used_value .rfind("." )] elif default_value_set: # if none of the above applies use the default value used_value = default_value is_default_value = True else: # if the requested current_attribute is not a custom property or a attribute # or there is a default value stored # it throws an exception raise Exception( "The obj: {} does not have the " "attribute: {}, striped: {}. Maybe try a default " "value.".format( current_obj.name, current_attribute, used_attribute)) # check if the value should be saved as an image or in the csv file save_in_csv = False try: resulting_map[segmap == object_id] = used_value was_used = True if not is_default_value: non_default_value_was_used = True # save everything which is not instance also in the .csv if current_attribute != "instance": save_in_csv = True except ValueError: save_in_csv = True if last_state_save_in_csv is not None and last_state_save_in_csv != save_in_csv: raise Exception( "During creating the mapping, the saving to an image or a csv file " "switched, this might indicated that the used default value, does " "not have the same type as the returned value, " "for: {}".format(current_attribute)) last_state_save_in_csv = save_in_csv if save_in_csv: if object_id in save_in_csv_attributes: save_in_csv_attributes[object_id][ used_attribute] = used_value else: save_in_csv_attributes[object_id] = { used_attribute: used_value } if was_used and non_default_value_was_used: used_channels.append(org_attribute) combined_result_map.append(resulting_map) fname = final_segmentation_file_path + ("%04d" % frame) + suffix # combine all resulting images to one image resulting_map = np.stack(combined_result_map, axis=2) # remove the unneeded third dimension if resulting_map.shape[2] == 1: resulting_map = resulting_map[:, :, 0] np.save(fname, resulting_map) if not there_was_an_instance_rendering: if len(list_of_used_attributes) > 0: raise Exception( "There were attributes specified in the may_by, which could not be saved as " "there was no \"instance\" may_by key used. This is true for this/these " "keys: {}".format(", ".join(list_of_used_attributes))) # if there was no instance rendering no .csv file is generated! # delete all saved infos about .csv save_in_csv_attributes = {} # write color mappings to file if save_in_csv_attributes: csv_file_path = os.path.join( output_dir, segcolormap_output_file_prefix + ".csv") with open(csv_file_path, 'w', newline='') as csvfile: # get from the first element the used field names fieldnames = ["idx"] # get all used object element keys for object_element in save_in_csv_attributes.values(): fieldnames.extend(list(object_element.keys())) break for channel_name in used_channels: fieldnames.append("channel_{}".format(channel_name)) writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() # save for each object all values in one row for obj_idx, object_element in save_in_csv_attributes.items( ): object_element["idx"] = obj_idx for i, channel_name in enumerate(used_channels): object_element["channel_{}".format( channel_name)] = i writer.writerow(object_element) Utility.register_output(output_dir, file_prefix, output_key, ".npy", "2.0.0") if save_in_csv_attributes: Utility.register_output(output_dir, segcolormap_output_file_prefix, segcolormap_output_key, ".csv", "2.0.0", unique_for_camposes=False)