示例#1
0
    def _spawn_pedestrians(self, context_index):  #re-change by spawn by file

        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())
        current_pedestrian_position = []
        group_num = [
            int(constants.spawn_rate / 2),
            constants.spawn_rate - int(constants.spawn_rate / 2)
        ]
        ids_each_group = []

        #we also need to know the current id of each group
        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            ids_each_group.append(ped_id)
            current_pedestrian_position.append([x, y])

        if self.spawn_new_pedestrians == True:

            context1 = adaptive_context(self.parameters)
            context1._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][0])

            context2 = adaptive_context(self.parameters)
            context2._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][1])

            population_generator1 = PopulationGenerator(
                self.parameters, self.parameters['in_group_a_strength'],
                self.parameters['in_group_a_range'],
                self.parameters['in_group_r_strength'],
                self.parameters['in_group_r_range'],
                self.parameters['out_group_a_strength'],
                self.parameters['out_group_a_range'],
                self.parameters['out_group_r_strength'],
                self.parameters['out_group_r_range'],
                self.parameters['target_a_strength'],
                self.parameters['target_a_range'], group_num)

            population_generator2 = PopulationGenerator(
                self.parameters, self.parameters['in_group_a_strength'],
                self.parameters['in_group_a_range'],
                self.parameters['in_group_r_strength'],
                self.parameters['in_group_r_range'],
                self.parameters['out_group_a_strength'],
                self.parameters['out_group_a_range'],
                self.parameters['out_group_r_strength'],
                self.parameters['out_group_r_range'],
                self.parameters['target_a_strength'],
                self.parameters['target_a_range'], group_num)

            radii_generator1 = context1._get_radii_generators()
            placement_generator1 = context1._get_placement_generators()

            radii_generator2 = context2._get_radii_generators()
            placement_generator2 = context2._get_placement_generators()

            pedestrian_current_id1 = population_generator1._generate_population(
                radii_generator1, placement_generator1, population_number)
            current_ped_generator1 = [
                temp_id
                for temp_id in range(population_number, pedestrian_current_id1)
            ]

            pedestrian_current_id2 = population_generator2._generate_population(
                radii_generator2, placement_generator2, pedestrian_current_id1)
            current_ped_generator2 = [
                temp_id for temp_id in range(pedestrian_current_id1,
                                             pedestrian_current_id2)
            ]

            additional_pedestrians1, additional_id_existed_ped1 = population_generator1._get_generated_group_pedestrians_population(
                ids_each_group + current_ped_generator2)

            additional_pedestrians2, additional_id_existed_ped2 = population_generator2._get_generated_group_pedestrians_population(
                ids_each_group + current_ped_generator1)

            additional_pedestrians = additional_pedestrians1 + additional_pedestrians2
            '''we  need to add additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list1 = additional_id_existed_ped1[ped_id]
                if len(current_list1) > 0:
                    current_list1 = [int(item) for item in current_list1]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)

                current_list2 = additional_id_existed_ped2[ped_id]
                if len(current_list2) > 0:
                    current_list2 = [int(item) for item in current_list2]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)
            '''we add new pedestrian into '''
            if additional_pedestrians is not None and len(
                    additional_pedestrians) > 0:
                for group_member in additional_pedestrians:
                    force_model.add_group_pedestrian(group_member)

            #we then dump these context into folder temp_additional context
            '''dump log file by using frame'''
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_generator1 = frame_context(str(self.frames),
                                             additional_pedestrians1,
                                             additional_id_existed_ped1)
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))
            log_file = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(frame_generator1,
                                  cls=FrameContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

            frame_generator2 = frame_context(str(self.frames),
                                             additional_pedestrians2,
                                             additional_id_existed_ped2)
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))
            log_file = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(frame_generator2,
                                  cls=FrameContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

        else:
            #we get from json file rather than add manually by code
            #the difference between two types is just group list, they should have the same placement
            #so if self.parameters['nearby_in_group'] = 1 we have to re-assign group id for them
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))

            adaptivecontext_file1 = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file1.read()
            currentframecontext1 = json.loads(json_str,
                                              cls=FrameContextLog_Decoder)
            pedestrian_list1 = currentframecontext1.get_pedestrian_list()
            additional_id_existed_ped1 = currentframecontext1.get_additional_id_existed_ped(
            )
            adaptivecontext_file1.close()

            adaptivecontext_file2 = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file2.read()
            currentframecontext2 = json.loads(json_str,
                                              cls=FrameContextLog_Decoder)
            pedestrian_list2 = currentframecontext2.get_pedestrian_list()
            additional_id_existed_ped2 = currentframecontext2.get_additional_id_existed_ped(
            )
            adaptivecontext_file2.close()

            additional_pedestrians = pedestrian_list1 + pedestrian_list2
            '''we  need to add additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list1 = additional_id_existed_ped1[ped_id]
                if len(current_list1) > 0:
                    current_list1 = [int(item) for item in current_list1]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)

                current_list2 = additional_id_existed_ped2[ped_id]
                if len(current_list2) > 0:
                    current_list2 = [int(item) for item in current_list2]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list1),
                                friend_zone=tuple(current_list1))

                    force_model.add_additional_group_member(data)

            if additional_pedestrians is not None and len(
                    additional_pedestrians) > 0:
                for group_member in additional_pedestrians:
                    force_model.add_group_pedestrian(group_member)
示例#2
0
    def _spawn_pedestrians(self, context_index):  #re-change by spawn by file

        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())
        current_pedestrian_position = []
        group_num = [
            int(constants.spawn_rate / 2),
            constants.spawn_rate - int(constants.spawn_rate / 2)
        ]

        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            current_pedestrian_position.append([x, y])

        if self.spawn_new_pedestrians == True:
            context1 = adaptive_context(self.parameters)
            context1._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][0])

            context2 = adaptive_context(self.parameters)
            context2._generateContext(current_pedestrian_position, group_num,
                                      self.parameters['start_areas'][1])

        else:
            #we get from json file rather than add manually by code
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (str(context_index) + "_" +
                                     str(int(self.frames)))

            adaptivecontext_file1 = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file1.read()
            context1 = json.loads(json_str, cls=AdaptiveContextLog_Decoder)
            adaptivecontext_file1.close()

            adaptivecontext_file2 = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file2.read()
            context2 = json.loads(json_str, cls=AdaptiveContextLog_Decoder)
            adaptivecontext_file2.close()

        population_generator = PopulationGenerator(
            self.parameters, self.parameters['in_group_a_strength'],
            self.parameters['in_group_a_range'],
            self.parameters['in_group_r_strength'],
            self.parameters['in_group_r_range'],
            self.parameters['out_group_a_strength'],
            self.parameters['out_group_a_range'],
            self.parameters['out_group_r_strength'],
            self.parameters['out_group_r_range'],
            self.parameters['target_a_strength'],
            self.parameters['target_a_range'], group_num)

        radii_generator1 = context1._get_radii_generators()
        placement_generator1 = context1._get_placement_generators()

        pedestrian_current_id = population_generator._generate_population(
            radii_generator1, placement_generator1, population_number)
        additional_pedestrians1 = population_generator._get_generated_group_pedestrians_population(
        )
        if additional_pedestrians1 is not None and len(
                additional_pedestrians1) > 0:
            for group_member in additional_pedestrians1:
                force_model.add_group_pedestrian(group_member)

        radii_generator2 = context2._get_radii_generators()
        placement_generator2 = context2._get_placement_generators()

        population_generator._generate_population(radii_generator2,
                                                  placement_generator2,
                                                  pedestrian_current_id)
        additional_pedestrians2 = population_generator._get_generated_group_pedestrians_population(
        )
        if additional_pedestrians2 is not None and len(
                additional_pedestrians2) > 0:
            for group_member in additional_pedestrians2:
                force_model.add_group_pedestrian(group_member)

        if self.spawn_new_pedestrians == True:
            #we then dump these context into folder temp_additional context
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))

            log_file = open(
                "%s_1.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(context1, cls=AdaptiveContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))

            log_file = open(
                "%s_2.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(context2, cls=AdaptiveContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()
示例#3
0
    def _spawn_pedestrians(self, context_index):  #re-change by spawn by file

        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())
        current_pedestrian_position = []

        ids_each_group = []

        #we also need to know the current id of each group
        for i in range(population_number):
            (x, y) = force_model.group_pedestrian_a_property(i, "position")
            ped_id = int(force_model.group_pedestrian_a_property(i, "ped_id"))
            ids_each_group.append(ped_id)
            current_pedestrian_position.append([x, y])

        if self.spawn_new_pedestrians == True:
            #we get new pedestrians
            group_num = [
                int(constants.spawn_rate / 2),
                constants.spawn_rate - int(constants.spawn_rate / 2)
            ]

            context = adaptive_context(self.parameters)
            context._generateContext(current_pedestrian_position, group_num)

            population_generator = PopulationGenerator(
                self.parameters, self.parameters['in_group_a_strength'],
                self.parameters['in_group_a_range'],
                self.parameters['in_group_r_strength'],
                self.parameters['in_group_r_range'],
                self.parameters['out_group_a_strength'],
                self.parameters['out_group_a_range'],
                self.parameters['out_group_r_strength'],
                self.parameters['out_group_r_range'],
                self.parameters['target_a_strength'],
                self.parameters['target_a_range'], group_num)

            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index)
                                     + "_" + str(int(self.frames)))
            frame_filename = "%s" % (
                str(self.parameters['in_group_r_strength']) + "_" +
                str(self.parameters['in_group_a_strength']) + "_" +
                str(disp_level) + "_" + str(context_index) + "_" +
                str(int(self.frames)))

            adaptivecontext_file = open(
                "%s.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file.read()
            currentframecontext = json.loads(json_str,
                                             cls=AdaptiveContextLog_Decoder)
            radii_generator = currentframecontext._get_radii_generators()
            placement_generator = currentframecontext._get_placement_generators(
            )

            #radii_generator = context._get_radii_generators()
            #placement_generator= context._get_placement_generators()

            population_generator._generate_population(radii_generator,
                                                      placement_generator,
                                                      population_number)
            additional_pedestrians, additional_id_existed_ped = population_generator._get_generated_group_pedestrians_population(
                ids_each_group)
            '''we  need to add additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list = additional_id_existed_ped[ped_id]
                if len(current_list) > 0:
                    current_list = [int(item) for item in current_list]
                    data = dict(ped_id=ped_id,
                                additional_count=len(current_list),
                                friend_zone=tuple(current_list))

                    force_model.add_additional_group_member(data)
                    #print(ped_id, tuple(current_list))
            '''we add new pedestrian into '''
            if additional_pedestrians is not None and len(
                    additional_pedestrians) > 0:
                for group_member in additional_pedestrians:
                    '''should modify target position based on y'''
                    (x, y) = group_member['position']
                    if y <= self.y_horizontal_line:
                        del group_member['target']
                        group_member['target'] = self.target_upper
                    else:
                        del group_member['target']
                        group_member['target'] = self.target_below

                    force_model.add_group_pedestrian(group_member)

            #we then dump these context into folder temp_additional context
            '''dump log file by using frame'''

            frame_generator = frame_context(str(self.frames),
                                            additional_pedestrians,
                                            additional_id_existed_ped)

            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (
                str(self.parameters['in_group_r_strength']) + "_" +
                str(self.parameters['in_group_a_strength']) + "_" +
                str(disp_level) + "_" + str(context_index) + "_" +
                str(int(self.frames)))

            log_file = open(
                "%s.json" %
                os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(frame_generator, cls=FrameContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()

        else:
            #we get from json file rather than add manually by code
            #the difference between two types is just group list, they should have the same placement
            #so if self.parameters['nearby_in_group'] = 1 we have to re-assign group id for them
            disp_level = self.parameters[
                'out_group_r_strength'] / self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (
                str(self.parameters['in_group_r_strength']) + "_" +
                str(self.parameters['in_group_a_strength']) + "_" +
                str(disp_level) + "_" + str(context_index) + "_" +
                str(int(self.frames)))

            adaptivecontext_file = open(
                "%s.json" %
                os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file.read()
            currentframecontext = json.loads(json_str,
                                             cls=FrameContextLog_Decoder)
            pedestrian_list = currentframecontext.get_pedestrian_list()
            additional_id_existed_ped = currentframecontext.get_additional_id_existed_ped(
            )
            adaptivecontext_file.close()
            '''we also need to dump additional for existed ped here'''
            #we also need to update friend list for existed pedestrians
            for ped_id in ids_each_group:
                #we need to fetch that friend list for this pedestrian and update in model
                current_list = additional_id_existed_ped[str(ped_id)]
                if len(current_list) > 0:
                    current_list = [int(item) for item in current_list]
                    data = dict(ped_id=int(ped_id),
                                additional_count=len(current_list),
                                friend_zone=tuple(current_list))
                    force_model.add_additional_group_member(data)

            if pedestrian_list is not None and len(pedestrian_list) > 0:
                for group_member in pedestrian_list:
                    '''should modify target position based on y'''
                    (x, y) = group_member['position']
                    if y <= self.y_horizontal_line:
                        del group_member['target']
                        group_member['target'] = self.target_upper
                    else:
                        del group_member['target']
                        group_member['target'] = self.target_below
                    force_model.add_group_pedestrian(group_member)
示例#4
0
    def _spawn_pedestrians(self,context_index): #re-change by spawn by file
        
        #first we get current position so that they are not overlap
        population_number = int(force_model.get_population_size())  
        current_pedestrian_position = []
        group_num = [int(constants.spawn_rate/2), constants.spawn_rate - int(constants.spawn_rate/2)]  
        
        for i in range(population_number):
            (x,y) = force_model.group_pedestrian_a_property(i, "position")
            current_pedestrian_position.append([x,y])
  
        if self.spawn_new_pedestrians==True:
            context = adaptive_context(self.parameters)
            context._generateContext(current_pedestrian_position, group_num)
            
            
        else:          
            #we get from json file rather than add manually by code
            disp_level = self.parameters['out_group_r_strength']/self.parameters['in_group_r_strength']
#            frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            #frame_filename = "%s" % (str(context_index) + "_" + str(int(self.frames)))

            frame_filename = "%s" % (str(self.parameters['in_group_r_strength']) + "_" + str(self.parameters['in_group_a_strength']) + "_" + str(disp_level) + "_" + 
                                     str(context_index) + "_" + str(int(self.frames)))                    
            
            adaptivecontext_file = open( "%s.json" % os.path.join(self.adaptive_context_dir, frame_filename))
            json_str = adaptivecontext_file.read()
            context=  json.loads(json_str, cls =AdaptiveContextLog_Decoder)
            adaptivecontext_file.close()
        

        population_generator  =  PopulationGenerator(self.parameters,
                                                    self.parameters['in_group_a_strength'],self.parameters['in_group_a_range'],
                                                    self.parameters['in_group_r_strength'],self.parameters['in_group_r_range'],
                                                    self.parameters['out_group_a_strength'],self.parameters['out_group_a_range'],
                                                    self.parameters['out_group_r_strength'],self.parameters['out_group_r_range'],
                                                    self.parameters['target_a_strength'],self.parameters['target_a_range'],group_num)  

        radii_generator = context._get_radii_generators()
        placement_generator= context._get_placement_generators()
                            
        population_generator._generate_population(radii_generator,placement_generator,population_number)          
        additional_pedestrians = population_generator._get_generated_group_pedestrians_population() 
        if additional_pedestrians is not None and len(additional_pedestrians)>0:
            for group_member in  additional_pedestrians:
                '''should modify target position based on y'''
                (x,y) = group_member['position']
                if y <= self.y_horizontal_line:
                    del group_member['target']
                    group_member['target'] = self.target_upper
                else:                                                                
                    del group_member['target']
                    group_member['target'] = self.target_below
                
                force_model.add_group_pedestrian(group_member)                      
        
        
        if self.spawn_new_pedestrians==True:
        #we then dump these context into folder temp_additional context
            disp_level = self.parameters['out_group_r_strength']/self.parameters['in_group_r_strength']
            #frame_filename = "%s" % (str(disp_level) + "_" + str(context_index) + "_" + str(int(self.frames)))
            frame_filename = "%s" % (str(self.parameters['in_group_r_strength']) + "_" + str(self.parameters['in_group_a_strength']) + "_" + str(disp_level) + "_" + 
                                     str(context_index) + "_" + str(int(self.frames)))      
                    
            log_file = open( "%s.json" % os.path.join(self.adaptive_context_dir, frame_filename), "w")
            json_obj = json.dumps(context, cls=AdaptiveContextLog_Encoder)
            log_file.write(json_obj)
            log_file.close()