config.restart = True # copy over new num_epochs and lr schedule config.num_epochs = given_config.num_epochs config.lr_schedule = given_config.lr_schedule if not hasattr(config, "kmeans_on_features"): config.kmeans_on_features = False else: print("Config: %s" % config_to_str(config)) # Data, nets, optimisers ------------------------------------------------------- dataloader_original, dataloader_positive, dataloader_negative, \ dataloader_test = make_triplets_data(config) train_dataloaders = [ dataloader_original, dataloader_positive, dataloader_negative ] net = archs.__dict__[config.arch](config) if config.restart: model_path = os.path.join(config.out_dir, "latest_net.pytorch") taking_best = not os.path.exists(model_path) if taking_best: print("using best instead of latest") model_path = os.path.join(config.out_dir, "best_net.pytorch") net.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage))
assert config.model_ind == given_config.model_ind config.restart = True # copy over new num_epochs and lr schedule config.num_epochs = given_config.num_epochs config.lr_schedule = given_config.lr_schedule if not hasattr(config, "kmeans_on_features"): config.kmeans_on_features = False else: print("Config: %s" % config_to_str(config)) # Data, nets, optimisers ------------------------------------------------------- dataloader_original, dataloader_positive, dataloader_negative, dataloader_test = make_triplets_data( config) train_dataloaders = [ dataloader_original, dataloader_positive, dataloader_negative ] net = archs.__dict__[config.arch](config) taking_best = None if config.restart: model_path = os.path.join(config.out_dir, "latest_net.pytorch") taking_best = not os.path.exists(model_path) if taking_best: print("using best instead of latest") model_path = os.path.join(config.out_dir, "best_net.pytorch") net.load_state_dict(