示例#1
0
    def predict(self,img, faces):
        analysis = []

        #getting input model shapes for inference
        emotion_target_size = self.emotion_classifier.input_shape[1:3]
        #rgb_image = load_image(img , grayscale=False)
        rgb_image = cv2.cvtColor(img.copy(),cv2.cv2.COLOR_BGR2RGB)
        #gray_image = load_image(img , grayscale=True)
        gray_image = cv2.cvtColor(img.copy(),cv2.cv2.COLOR_BGR2GRAY)
        gray_image = np.squeeze(gray_image)
        gray_image = gray_image.astype('uint8')

        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates, self.emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]

            try:
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_label_arg = np.argmax(self.emotion_classifier.predict(gray_face))
            emotion_text = emotion_labels[emotion_label_arg]

            color = (0, 0, 255)
            draw_bounding_box(face_coordinates, rgb_image, color)
            draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)
                #ouput
            analysis.append([face_coordinates, emotion_text]) #Essa será a saida, externamente decidiremos para onde vai
        bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        return analysis, bgr_image # Aqui ele retorna lista de faces detectadas com os labels de genero e emoção
def process_image(image, filename, model_path):

    try:
        # parameters for loading data and images
        detection_model_path = './trained_models/detection_models/haarcascade_frontalface_default.xml'
        emotion_model_path = model_path + '/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
        gender_model_path = model_path + '/gender_models/simple_CNN.81-0.96.hdf5'
        emotion_labels = get_labels('fer2013')
        gender_labels = get_labels('imdb')
        font = cv2.FONT_HERSHEY_SIMPLEX

        # hyper-parameters for bounding boxes shape
        gender_offsets = (30, 60)
        gender_offsets = (10, 10)
        emotion_offsets = (20, 40)
        emotion_offsets = (0, 0)

        # loading models
        face_detection = load_detection_model(detection_model_path)
        emotion_classifier = load_model(emotion_model_path, compile=False)
        gender_classifier = load_model(gender_model_path, compile=False)

        # getting input model shapes for inference
        emotion_target_size = emotion_classifier.input_shape[1:3]
        gender_target_size = gender_classifier.input_shape[1:3]

        # loading images
        image_array = np.fromstring(image, np.uint8)
        unchanged_image = cv2.imdecode(image_array, cv2.IMREAD_UNCHANGED)

        rgb_image = cv2.cvtColor(unchanged_image, cv2.COLOR_BGR2RGB)
        gray_image = cv2.cvtColor(unchanged_image, cv2.COLOR_BGR2GRAY)

        faces = detect_faces(face_detection, gray_image)
        for face_coordinates in faces:
            x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
            rgb_face = rgb_image[y1:y2, x1:x2]

            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]

            try:
                rgb_face = cv2.resize(rgb_face, (gender_target_size))
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            rgb_face = preprocess_input(rgb_face, False)
            rgb_face = np.expand_dims(rgb_face, 0)
            gender_prediction = gender_classifier.predict(rgb_face)
            gender_label_arg = np.argmax(gender_prediction)
            gender_text = gender_labels[gender_label_arg]

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
            emotion_text = emotion_labels[emotion_label_arg]

            if gender_text == gender_labels[0]:
                color = (0, 0, 255)
            else:
                color = (255, 0, 0)

            draw_bounding_box(face_coordinates, rgb_image, color)
            draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
            draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)
    except Exception as err:
        logging.error('Error in emotion gender processor: "{0}"'.format(err))

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)

    dirname = 'result'
    if not os.path.exists(dirname):
        os.mkdir(dirname)

    cv2.imwrite(os.path.join(dirname, filename), bgr_image)
示例#3
0

input_x,out_softmax=model_load()

start=time.time();
while (count<400):
    bgr_image = video_capture.read()[1]
 #   bgr_image=cv2.imread("/home/qiaocheng/PycharmProjects/face_classification-master_raspi/pic_save/167_sad.jpg")
    gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
    if(1):
        faces = detect_faces(face_detection, gray_image)
        print("===bgr===")
        for face_coordinates in faces:
            print("===bgr1===")
            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]
            print(gray_face.shape)

            try:
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue
            gray_face = preprocess_input(gray_face, True) #类似于标准化的操作(64,64)
            gray_face = np.expand_dims(gray_face, 0)#(1,64,64)
            gray_face = np.expand_dims(gray_face, -1)#(1,64,64,1)
          #  emotion_prediction = emotion_classifier.predict(gray_face)
            emotion_prediction=sess.run(out_softmax, feed_dict={input_x: gray_face})
            emotion_probability = np.max(emotion_prediction)
            emotion_label_arg = np.argmax(emotion_prediction)
            emotion_text = emotion_labels[emotion_label_arg]
def image_emotion_gender(image):
    bgr_image = image
    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
    gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)


    detection_model_path = 'trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = 'trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    gender_model_path = 'trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('fer2013')
    gender_labels = get_labels('imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]
    faces = detect_faces(face_detection, gray_image)
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1, 2)

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    return bgr_image
def process_image(image):
    K.clear_session()

    # parameters for loading data and images
    if sys.path[1] == '/app':
        #load model for heroku
        detection_model_path = sys.path[
            1] + '/trained_models/detection_models/haarcascade_frontalface_default.xml'
        emotion_model_path = sys.path[
            1] + '/trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    else:
        detection_model_path = sys.path[
            -1] + '/trained_models/detection_models/haarcascade_frontalface_default.xml'
        emotion_model_path = sys.path[
            -1] + '/trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'

    emotion_labels = get_labels('fer2013')
    font = cv2.FONT_HERSHEY_SIMPLEX

    # hyper-parameters for bounding boxes shape
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]

    # loading images
    image_array = np.fromstring(image, np.uint8)
    unchanged_image = cv2.imdecode(image_array, cv2.IMREAD_UNCHANGED)
    rgb_image = cv2.cvtColor(unchanged_image, cv2.COLOR_BGR2RGB)
    gray_image = cv2.cvtColor(unchanged_image, cv2.COLOR_BGR2GRAY)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    faces = detect_faces(face_detection, gray_image)
    emotion_text_arr = []

    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]
        emotion_text_arr.append(emotion_text)

        color = (255, 0, 0)

        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1,
                  2)

    bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
    K.clear_session()

    return (bgr_image, emotion_text_arr)
def race_emotion(image_path, save_path=None, task='save', faces):

    image_path = image_path  #'../test_images'#sys.argv[1]
    detection_model_path = '../trained_models/detection_models/haarcascade_frontalface_default.xml'
    emotion_model_path = '../trained_models/emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
    gender_model_path = '../trained_models/gender_models/simple_CNN.81-0.96.hdf5'
    emotion_labels = get_labels('../trained_models/fer2013')
    gender_labels = get_labels('../trained_models/imdb')
    font = cv2.FONT_HERSHEY_SIMPLEX

    base = os.path.basename(image_path)
    name = os.path.splitext(base)[0]
    # hyper-parameters for bounding boxes shape
    gender_offsets = (30, 60)
    gender_offsets = (10, 10)
    emotion_offsets = (20, 40)
    emotion_offsets = (0, 0)

    # loading models
    face_detection = load_detection_model(detection_model_path)
    emotion_classifier = load_model(emotion_model_path, compile=False)
    gender_classifier = load_model(gender_model_path, compile=False)

    # getting input model shapes for inference
    emotion_target_size = emotion_classifier.input_shape[1:3]
    gender_target_size = gender_classifier.input_shape[1:3]

    # loading images
    rgb_image = load_image(image_path, grayscale=False)

    gray_image = load_image(image_path, grayscale=True)
    gray_image = np.squeeze(gray_image)
    gray_image = gray_image.astype('uint8')

    #faces = detect_faces(face_detection, gray_image)
    faces = faces
    i = 0
    for face_coordinates in faces:
        x1, x2, y1, y2 = apply_offsets(face_coordinates, gender_offsets)
        rgb_face = rgb_image[y1:y2, x1:x2]

        x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
        gray_face = gray_image[y1:y2, x1:x2]

        try:
            rgb_face = cv2.resize(rgb_face, (gender_target_size))
            gray_face = cv2.resize(gray_face, (emotion_target_size))
        except:
            print '=' * 10 + 'exception in resize'
            continue

#print 'exception in resize' #continue

        rgb_face = preprocess_input(rgb_face, False)
        rgb_face = np.expand_dims(rgb_face, 0)
        gender_prediction = gender_classifier.predict(rgb_face)
        gender_label_arg = np.argmax(gender_prediction)
        gender_text = gender_labels[gender_label_arg]

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
        emotion_text = emotion_labels[emotion_label_arg]

        if gender_text == gender_labels[0]:
            color = (0, 0, 255)
        else:
            color = (255, 0, 0)

        crop = rgb_image[y1:y2, x1:x2]
        crop = cv2.cvtColor(crop, cv2.COLOR_RGB2BGR)
        #race=find_race(crop,gender_text)
        print('emotion and race are:', emotion_text, race)
        #cv2.imwrite('images/'+str(i)+'.png', crop)
        draw_bounding_box(face_coordinates, rgb_image, color)
        draw_text(face_coordinates, rgb_image, color, 0, -20, 1, 2)
        #draw_text(face_coordinates, rgb_image, gender_text, color, 0, -20, 1, 2)
        draw_text(face_coordinates, rgb_image, emotion_text, color, 0, -50, 1,
                  2)
        i = i + 1

    if task == 'save':
        bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        cv2.imwrite('../OUT/' + name + '.png', bgr_image)
示例#7
0
def main():
    cv2.namedWindow('window_frame')
    video_capture = cv2.VideoCapture(0)
    while True:
        bgr_image = video_capture.read()[1]
        gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
        rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
        faces = detect_faces(face_detection, gray_image)

        for face_coordinates in faces:

            x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
            gray_face = gray_image[y1:y2, x1:x2]
            try:
                gray_face = cv2.resize(gray_face, (emotion_target_size))
            except:
                continue

            gray_face = preprocess_input(gray_face, True)
            gray_face = np.expand_dims(gray_face, 0)
            gray_face = np.expand_dims(gray_face, -1)
            emotion_prediction = emotion_classifier.predict(gray_face)
            emotion_probability = np.max(emotion_prediction)
            emotion_label_arg = np.argmax(emotion_prediction)
            emotion_text = emotion_labels[emotion_label_arg]
            emotion_window.append(emotion_text)

            if len(emotion_window) > frame_window:
                emotion_window.pop(0)
            try:
                emotion_mode = mode(emotion_window)
            except:
                continue

            if emotion_text == 'angry':
                color = emotion_probability * np.asarray((255, 0, 0))
                print(emoji.emojize(emoji.demojize("😠")))
            elif emotion_text == 'sad':
                color = emotion_probability * np.asarray((0, 0, 255))
                print(emoji.emojize(emoji.demojize("😰")))
            elif emotion_text == 'happy':
                color = emotion_probability * np.asarray((255, 255, 0))
                print(emoji.emojize(emoji.demojize("😃")))
            elif emotion_text == 'surprise':
                color = emotion_probability * np.asarray((0, 255, 255))
                print(emoji.emojize(emoji.demojize("😯")))
            elif emotion_text == 'disgusted':
                color = emotion_probability * np.asarray((0, 255, 255))
                print(emoji.emojize(emoji.demojize("😣")))
            elif emotion_text == 'fearful':
                color = emotion_probability * np.asarray((0, 255, 255))
                print(emoji.emojize(emoji.demojize("😟")))
            else:
                color = emotion_probability * np.asarray((0, 255, 0))
                print(emotion_text)

            color = color.astype(int)
            color = color.tolist()

            draw_bounding_box(face_coordinates, rgb_image, color)
            draw_text(face_coordinates, rgb_image, emotion_mode, color, 0, -45,
                      1, 1)

        bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        cv2.imshow('window_frame', bgr_image)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
示例#8
0
# starting lists for calculating modes
emotion_window = []

# starting video streaming
cv2.namedWindow('window_frame')
video_capture = cv2.VideoCapture(0)
while True:
    bgr_image = video_capture.read()[1]
    gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
    faces = detect_faces(face_detection, gray_image)

    for face_coordinates in faces:

        x1, x2, y1, y2 = apply_offsets(face_coordinates, offsets)
        gray_face = gray_image[y1:y2, x1:x2]
        try:
            gray_face = cv2.resize(gray_face, target_size)
        except:
            continue

        gray_face = preprocess_input(gray_face, True)
        gray_face = np.expand_dims(gray_face, 0)
        gray_face = np.expand_dims(gray_face, -1)
        guided_gradCAM = calculate_guided_gradient_CAM(gray_face,
                                                       gradient_function, saliency_function)
        guided_gradCAM = cv2.resize(guided_gradCAM, (x2 - x1, y2 - y1))
        try:
            rgb_guided_gradCAM = np.repeat(guided_gradCAM[:, :, np.newaxis],
                                           3, axis=2)