示例#1
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, 'rmspbe_summary.npy')

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = use_ideal_h

        label = exp.agent
        if use_ideal_h:
            label += '-h*'

        if use_ideal_h:
            continue

        if 'SmoothTDC' in exp.agent:
            agents = splitOverParameter(results, 'averageType')
            smooth_colors = {
                'ema': 'pink',
                'buffer': 'grey',
                'window': 'black',
            }
            plot(agents['ema'],
                 ax,
                 label=label + '_ema',
                 bestBy='auc',
                 color=smooth_colors['ema'],
                 dashed=dashed)
            # plot(agents['buffer'], ax, label=label + '_buffer', bestBy='auc', color=smooth_colors['buffer'], dashed=dashed)
            # plot(agents['window'], ax, label=label + '_window', bestBy='auc', color=smooth_colors['window'], dashed=dashed)

        else:
            color = colors[exp.agent]
            plot(results,
                 ax,
                 label=label,
                 bestBy='auc',
                 color=color,
                 dashed=dashed)

    plt.show()
    exit()
    # save(exp, f'rmspbe', type='png')
    problem = fileName(exp.getExperimentName())
    save_path = f'plots/'
    os.makedirs(save_path, exist_ok=True)

    fig = plt.gcf()
    fig.set_size_inches((13, 12), forward=False)
    plt.savefig(f'{save_path}/{problem}_rmspbe.png')
示例#2
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)

        # load the errors and hnorm files
        errors = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'hnorm_summary.npy')

        # choose the best parameters from the _errors_
        best = getBestEnd(errors)

        best_hnorm = find(results, best)

        label = fileName(exp_path).replace('.json', '')

        plotBest(best_hnorm, ax, label=label)

    plt.show()
    # save(exp, f'learning-curve')
    plt.clf()
示例#3
0
import sys
import json
import glob
import os
sys.path.append(os.getcwd())

from src.utils.path import fileName, up

old_agent_path = sys.argv[1]
problems = sys.argv[2:]

problems = filter(
    lambda p: '.' not in p and 'plots' not in p and 'LeftZero' not in p and
    'Random' not in p and '5050' not in p, problems)

with open(old_agent_path, 'r') as f:
    old_agent = f.read()

old_agent_base_name = fileName(up(old_agent_path))
old_agent_name = fileName(old_agent_path).replace('.json', '')
old_problem = fileName(up(up(old_agent_path)))

for problem in problems:
    path = f'{problem}/{old_agent_base_name}/{old_agent_name}.json'
    new = old_agent.replace(old_problem, fileName(problem))

    os.makedirs(up(path), exist_ok=True)
    with open(path, 'w') as f:
        f.write(new)
示例#4
0
import os
import sys
import json
import numpy as np
sys.path.append(os.getcwd())

from src.analysis.results import loadResults, getBest
from src.utils.model import loadExperiment
from src.utils.path import up, fileName

exp_paths = sys.argv[1:]

for exp_path in exp_paths:
    exp = loadExperiment(exp_path)
    results = loadResults(exp, 'rmspbe_summary.npy')
    best = getBest(results)
    print('---------------------')
    print('agent:', exp.agent)
    print(best.params)

    f = fileName(exp_path)
    new_path = up(exp_path) + '/best_rmspbe_auc/' + f

    d = exp._d
    d['metaParameters'] = best.params
    os.makedirs(up(new_path), exist_ok=True)
    with open(new_path, 'w') as f:
        json.dump(d, f, indent=4)
import sys
import json
import glob
import os
sys.path.append(os.getcwd())

from src.utils.path import fileName, up

prob_folder = sys.argv[1]
new_prob = sys.argv[2]
jsons = glob.glob(f'{prob_folder}/**/*.json', recursive=True)

old_prob = fileName(prob_folder)

for json in jsons:
    with open(json, 'r') as f:
        d = f.read()

        new = d.replace(old_prob, new_prob)
        new_path = json.replace(old_prob, new_prob)

        os.makedirs(up(new_path), exist_ok=True)
        with open(new_path, 'w') as f:
            f.write(new)
示例#6
0
        if 'lstd' in exp_path or 'htd' in exp_path or (
                'tdc_ema' in exp_path and not 'tdc_ema_x' in exp_path):
            continue

        if stepsize != 'constant' and stepsize not in exp_path:
            continue

        if stepsize == 'constant' and ('amsgrad' in exp_path or 'adagrad'
                                       in exp_path or 'schedule' in exp_path):
            continue

        exp = loadExperiment(exp_path)
        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        if use_ideal_h:
            continue

        paths.append(exp_path)

    generatePlot(paths)

    plt.show()
    exit()

    exp_name = fileName(up(exp.getExperimentName()))
    save_path = f'experiments/stepsizes/plots/2x2/{bestBy}'
    os.makedirs(save_path, exist_ok=True)

    fig = plt.gcf()
    fig.set_size_inches((13, 12), forward=False)
    plt.savefig(f'{save_path}/{exp_name}_square_{stepsize}.png', dpi=125)