示例#1
0
def main(cl_arguments):
    ''' Run REPL for a CoLA model '''

    # Arguments handling #
    cl_args = handle_arguments(cl_arguments)
    args = config.params_from_file(cl_args.config_file, cl_args.overrides)
    check_arg_name(args)
    assert args.target_tasks == "cola", \
        "Currently only supporting CoLA. ({})".format(args.target_tasks)

    if args.cuda >= 0:
        try:
            if not torch.cuda.is_available():
                raise EnvironmentError("CUDA is not available, or not detected"
                                       " by PyTorch.")
            log.info("Using GPU %d", args.cuda)
            torch.cuda.set_device(args.cuda)
        except Exception:
            log.warning("GPU access failed. You might be using a CPU-only"
                        " installation of PyTorch. Falling back to CPU.")
            args.cuda = -1

    # Prepare data #
    _, target_tasks, vocab, word_embs = build_tasks(args)
    tasks = sorted(set(target_tasks), key=lambda x: x.name)

    # Build or load model #
    model = build_model(args, vocab, word_embs, tasks)
    log.info("Loading existing model from %s...", cl_args.model_file_path)
    load_model_state(model,
                     cl_args.model_file_path,
                     args.cuda, [],
                     strict=False)

    # Inference Setup #
    model.eval()
    vocab = Vocabulary.from_files(os.path.join(args.exp_dir, 'vocab'))
    indexers = build_indexers(args)
    task = take_one(tasks)

    # Run Inference #
    if cl_args.inference_mode == "repl":
        assert cl_args.input_path is None
        assert cl_args.output_path is None
        print("Running REPL for task: {}".format(task.name))
        run_repl(model, vocab, indexers, task, args)
    elif cl_args.inference_mode == "corpus":
        run_corpus_inference(
            model,
            vocab,
            indexers,
            task,
            args,
            cl_args.input_path,
            cl_args.input_format,
            cl_args.output_path,
            cl_args.eval_output_path,
        )
    else:
        raise KeyError(cl_args.inference_mode)
示例#2
0
文件: main.py 项目: pep8speaks/jiant
def main(cl_arguments):
    ''' Train a model for multitask-training.'''
    cl_args = handle_arguments(cl_arguments)
    args = config.params_from_file(cl_args.config_file, cl_args.overrides)
    # Check for deprecated arg names
    check_arg_name(args)
    args, seed = initial_setup(args, cl_args)
    # Load tasks
    log.info("Loading tasks...")
    start_time = time.time()
    pretrain_tasks, target_tasks, vocab, word_embs = build_tasks(args)
    tasks = sorted(set(pretrain_tasks + target_tasks), key=lambda x: x.name)
    log.info('\tFinished loading tasks in %.3fs', time.time() - start_time)
    log.info('\t Tasks: {}'.format([task.name for task in tasks]))

    # Build model
    log.info('Building model...')
    start_time = time.time()
    model = build_model(args, vocab, word_embs, tasks)
    log.info('\tFinished building model in %.3fs', time.time() - start_time)

    # Start Tensorboard if requested
    if cl_args.tensorboard:
        tb_logdir = os.path.join(args.run_dir, "tensorboard")
        _run_background_tensorboard(tb_logdir, cl_args.tensorboard_port)

    check_configurations(args, pretrain_tasks, target_tasks)

    if args.do_pretrain:
        # Train on pretrain tasks
        log.info("Training...")
        stop_metric = pretrain_tasks[0].val_metric if len(
            pretrain_tasks) == 1 else 'macro_avg'
        should_decrease = pretrain_tasks[0].val_metric_decreases if len(
            pretrain_tasks) == 1 else False
        trainer, _, opt_params, schd_params = build_trainer(args, [],
                                                            model,
                                                            args.run_dir,
                                                            should_decrease,
                                                            phase="pretrain")
        to_train = [(n, p) for n, p in model.named_parameters()
                    if p.requires_grad]
        _ = trainer.train(pretrain_tasks,
                          stop_metric,
                          args.batch_size,
                          args.weighting_method,
                          args.scaling_method,
                          to_train,
                          opt_params,
                          schd_params,
                          args.shared_optimizer,
                          args.load_model,
                          phase="pretrain")

    # For checkpointing logic
    if not args.do_target_task_training:
        log.info("In strict mode because do_target_task_training is off. "
                 "Will crash if any tasks are missing from the checkpoint.")
        strict = True
    else:
        strict = False

    if args.do_target_task_training:
        # Train on target tasks
        task_names_to_avoid_loading = setup_target_task_training(
            args, target_tasks, model, strict)
        if args.transfer_paradigm == "frozen":
            # might be empty if elmo = 0. scalar_mix_0 should always be
            # pretrain scalars
            elmo_scalars = [(n, p) for n, p in model.named_parameters()
                            if "scalar_mix" in n and "scalar_mix_0" not in n]
            # Fails when sep_embs_for_skip is 0 and elmo_scalars has nonzero
            # length.
            assert_for_log(
                not elmo_scalars or args.sep_embs_for_skip,
                "Error: ELMo scalars loaded and will be updated in do_target_task_training but "
                "they should not be updated! Check sep_embs_for_skip flag or make an issue."
            )
        for task in target_tasks:
            # Skip mnli-diagnostic
            # This has to be handled differently than probing tasks because probing tasks require the "is_probing_task"
            # to be set to True. For mnli-diagnostic this flag will be False because it is part of GLUE and
            # "is_probing_task is global flag specific to a run, not to a task.
            if task.name == 'mnli-diagnostic':
                continue

            if args.transfer_paradigm == "finetune":
                # Train both the task specific models as well as sentence
                # encoder.
                to_train = [(n, p) for n, p in model.named_parameters()
                            if p.requires_grad]
            else:  # args.transfer_paradigm == "frozen":
                # Only train task-specific module
                pred_module = getattr(model, "%s_mdl" % task.name)
                to_train = [(n, p) for n, p in pred_module.named_parameters()
                            if p.requires_grad]
                to_train += elmo_scalars

            trainer, _, opt_params, schd_params = build_trainer(
                args, [task.name, 'target_train'],
                model,
                args.run_dir,
                task.val_metric_decreases,
                phase="target_train")
            _ = trainer.train(tasks=[task],
                              stop_metric=task.val_metric,
                              batch_size=args.batch_size,
                              weighting_method=args.weighting_method,
                              scaling_method=args.scaling_method,
                              train_params=to_train,
                              optimizer_params=opt_params,
                              scheduler_params=schd_params,
                              shared_optimizer=args.shared_optimizer,
                              load_model=False,
                              phase="target_train")

            # Now that we've trained a model, revert to the normal checkpoint
            # logic for this task.
            if task.name in task_names_to_avoid_loading:
                task_names_to_avoid_loading.remove(task.name)

            # The best checkpoint will accumulate the best parameters for each
            # task.
            layer_path = os.path.join(args.run_dir,
                                      "model_state_target_train_best.th")

            if args.transfer_paradigm == "finetune":
                # Save this fine-tune model with a task specific name.
                finetune_path = os.path.join(
                    args.run_dir, "model_state_%s_best.th" % task.name)
                os.rename(layer_path, finetune_path)

                # Reload the original best model from before target-task
                # training.
                pre_finetune_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model,
                                 pre_finetune_path,
                                 args.cuda,
                                 skip_task_models=[],
                                 strict=strict)
            else:  # args.transfer_paradigm == "frozen":
                # Load the current overall best model.
                # Save the best checkpoint from that target task training to be
                # specific to that target task.
                load_model_state(model,
                                 layer_path,
                                 args.cuda,
                                 strict=strict,
                                 skip_task_models=task_names_to_avoid_loading)

    if args.do_full_eval:
        # Evaluate
        log.info("Evaluating...")
        splits_to_write = evaluate.parse_write_preds_arg(args.write_preds)
        if args.transfer_paradigm == "finetune":
            for task in target_tasks:
                if task.name == 'mnli-diagnostic':
                    # we'll load mnli-diagnostic during mnli
                    continue
                # Special checkpointing logic here since we train the sentence encoder
                # and have a best set of sent encoder model weights per task.
                finetune_path = os.path.join(
                    args.run_dir, "model_state_%s_best.th" % task.name)
                if os.path.exists(finetune_path):
                    ckpt_path = finetune_path
                else:
                    ckpt_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model,
                                 ckpt_path,
                                 args.cuda,
                                 skip_task_models=[],
                                 strict=strict)

                tasks = [task]
                if task.name == 'mnli':
                    tasks += [
                        t for t in target_tasks if t.name == 'mnli-diagnostic'
                    ]
                evaluate_and_write(args, model, tasks, splits_to_write)

        elif args.transfer_paradigm == "frozen":
            # Don't do any special checkpointing logic here
            # since model already has all the trained task specific modules.
            evaluate_and_write(args, model, target_tasks, splits_to_write)

    log.info("Done!")
示例#3
0
def main(cl_arguments):
    ''' Train or load a model. Evaluate on some tasks. '''
    cl_args = handle_arguments(cl_arguments)
    args = config.params_from_file(cl_args.config_file, cl_args.overrides)

    # Raise error if obsolete arg names are present
    check_arg_name(args)

    # Logistics #
    maybe_make_dir(args.project_dir)  # e.g. /nfs/jsalt/exp/$HOSTNAME
    maybe_make_dir(args.exp_dir)      # e.g. <project_dir>/jiant-demo
    maybe_make_dir(args.run_dir)      # e.g. <project_dir>/jiant-demo/sst
    log.getLogger().addHandler(log.FileHandler(args.local_log_path))

    if cl_args.remote_log:
        from src.utils import gcp
        gcp.configure_remote_logging(args.remote_log_name)

    if cl_args.notify:
        from src.utils import emails
        global EMAIL_NOTIFIER
        log.info("Registering email notifier for %s", cl_args.notify)
        EMAIL_NOTIFIER = emails.get_notifier(cl_args.notify, args)

    if EMAIL_NOTIFIER:
        EMAIL_NOTIFIER(body="Starting run.", prefix="")

    _try_logging_git_info()

    log.info("Parsed args: \n%s", args)

    config_file = os.path.join(args.run_dir, "params.conf")
    config.write_params(args, config_file)
    log.info("Saved config to %s", config_file)

    seed = random.randint(1, 10000) if args.random_seed < 0 else args.random_seed
    random.seed(seed)
    torch.manual_seed(seed)
    log.info("Using random seed %d", seed)
    if args.cuda >= 0:
        try:
            if not torch.cuda.is_available():
                raise EnvironmentError("CUDA is not available, or not detected"
                                       " by PyTorch.")
            log.info("Using GPU %d", args.cuda)
            torch.cuda.set_device(args.cuda)
            torch.cuda.manual_seed_all(seed)
        except Exception:
            log.warning(
                "GPU access failed. You might be using a CPU-only installation of PyTorch. Falling back to CPU.")
            args.cuda = -1

    # Prepare data #
    log.info("Loading tasks...")
    start_time = time.time()
    pretrain_tasks, target_tasks, vocab, word_embs = build_tasks(args)
    if any([t.val_metric_decreases for t in pretrain_tasks]) and any(
            [not t.val_metric_decreases for t in pretrain_tasks]):
        log.warn("\tMixing training tasks with increasing and decreasing val metrics!")
    tasks = sorted(set(pretrain_tasks + target_tasks), key=lambda x: x.name)
    log.info('\tFinished loading tasks in %.3fs', time.time() - start_time)
    log.info('\t Tasks: {}'.format([task.name for task in tasks]))

    # Build model #
    log.info('Building model...')
    start_time = time.time()
    model = build_model(args, vocab, word_embs, tasks)
    log.info('\tFinished building model in %.3fs', time.time() - start_time)

    # Check that necessary parameters are set for each step. Exit with error if not.
    steps_log = []

    if not args.load_eval_checkpoint == 'none':
        assert_for_log(os.path.exists(args.load_eval_checkpoint),
                       "Error: Attempting to load model from non-existent path: [%s]" %
                       args.load_eval_checkpoint)
        assert_for_log(
            not args.do_pretrain,
            "Error: Attempting to train a model and then replace that model with one from a checkpoint.")
        steps_log.append("Loading model from path: %s" % args.load_eval_checkpoint)

    assert_for_log(args.transfer_paradigm in ["finetune", "frozen"],
                   "Transfer paradigm %s not supported!" % args.transfer_paradigm)

    if args.do_pretrain:
        assert_for_log(args.pretrain_tasks != "none",
                       "Error: Must specify at least on training task: [%s]" % args.pretrain_tasks)
        assert_for_log(
            args.val_interval %
            args.bpp_base == 0, "Error: val_interval [%d] must be divisible by bpp_base [%d]" %
            (args.val_interval, args.bpp_base))
        steps_log.append("Training model on tasks: %s" % args.pretrain_tasks)

    if args.do_target_task_training:
        steps_log.append("Re-training model for individual eval tasks")
        assert_for_log(
            args.eval_val_interval %
            args.bpp_base == 0, "Error: eval_val_interval [%d] must be divisible by bpp_base [%d]" %
            (args.eval_val_interval, args.bpp_base))
        assert_for_log(len(set(pretrain_tasks).intersection(target_tasks)) == 0
                       or args.allow_reuse_of_pretraining_parameters
                       or args.do_pretrain == 0,
                       "If you're pretraining on a task you plan to reuse as a target task, set\n"
                       "allow_reuse_of_pretraining_parameters = 1(risky), or train in two steps:\n"
                       "  train with do_pretrain = 1, do_target_task_training = 0, stop, and restart with\n"
                       "  do_pretrain = 0 and do_target_task_training = 1.")

    if args.do_full_eval:
        assert_for_log(args.target_tasks != "none",
                       "Error: Must specify at least one eval task: [%s]" % args.target_tasks)
        steps_log.append("Evaluating model on tasks: %s" % args.target_tasks)

    # Start Tensorboard if requested
    if cl_args.tensorboard:
        tb_logdir = os.path.join(args.run_dir, "tensorboard")
        _run_background_tensorboard(tb_logdir, cl_args.tensorboard_port)

    log.info("Will run the following steps:\n%s", '\n'.join(steps_log))
    if args.do_pretrain:
        # Train on train tasks #
        log.info("Training...")
        stop_metric = pretrain_tasks[0].val_metric if len(pretrain_tasks) == 1 else 'macro_avg'
        should_decrease = pretrain_tasks[0].val_metric_decreases if len(pretrain_tasks) == 1 else False
        trainer, _, opt_params, schd_params = build_trainer(args, [], model,
                                                            args.run_dir,
                                                            should_decrease)
        to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad]
        _ = trainer.train(pretrain_tasks, stop_metric,
                          args.batch_size, args.bpp_base,
                          args.weighting_method, args.scaling_method,
                          to_train, opt_params, schd_params,
                          args.shared_optimizer, args.load_model, phase="main")

    # Select model checkpoint from main training run to load
    if not args.do_target_task_training:
        log.info("In strict mode because do_target_task_training is off. "
                 "Will crash if any tasks are missing from the checkpoint.")
        strict = True
    else:
        strict = False

    if args.do_target_task_training and not args.allow_reuse_of_pretraining_parameters:
        # If we're training models for evaluation, which is always done from scratch with a fresh
        # optimizer, we shouldn't load parameters for those models.
        # Usually, there won't be trained parameters to skip, but this can happen if a run is killed
        # during the do_target_task_training phase.
        task_names_to_avoid_loading = [task.name for task in target_tasks]
    else:
        task_names_to_avoid_loading = []

    if not args.load_eval_checkpoint == "none":
        # This is to load a particular eval checkpoint.
        log.info("Loading existing model from %s...", args.load_eval_checkpoint)
        load_model_state(model, args.load_eval_checkpoint,
                         args.cuda, task_names_to_avoid_loading, strict=strict)
    else:
        # Look for eval checkpoints (available only if we're restoring from a run that already
        # finished), then look for training checkpoints.

        if args.transfer_paradigm == "finetune":
            # Save model so we have a checkpoint to go back to after each task-specific finetune.
            model_state = model.state_dict()
            model_path = os.path.join(args.run_dir, "model_state_untrained_prefinetune.th")
            torch.save(model_state, model_path)

        best_path = get_best_checkpoint_path(args.run_dir)
        if best_path:
            load_model_state(model, best_path, args.cuda, task_names_to_avoid_loading,
                             strict=strict)
        else:
            assert_for_log(args.allow_untrained_encoder_parameters,
                           "No best checkpoint found to evaluate.")
            log.warning("Evaluating untrained encoder parameters!")

    # Train just the task-specific components for eval tasks.
    if args.do_target_task_training:
        if args.transfer_paradigm == "frozen":
            # might be empty if elmo = 0. scalar_mix_0 should always be pretrain scalars
            elmo_scalars = [(n, p) for n, p in model.named_parameters() if
                            "scalar_mix" in n and "scalar_mix_0" not in n]
            # Fails when sep_embs_for_skip is 0 and elmo_scalars has nonzero length.
            assert_for_log(not elmo_scalars or args.sep_embs_for_skip,
                           "Error: ELMo scalars loaded and will be updated in do_target_task_training but "
                           "they should not be updated! Check sep_embs_for_skip flag or make an issue.")

        for task in target_tasks:
            # Skip mnli-diagnostic
            # This has to be handled differently than probing tasks because probing tasks require the "is_probing_task"
            # to be set to True. For mnli-diagnostic this flag will be False because it is part of GLUE and
            # "is_probing_task is global flag specific to a run, not to a task.
            if task.name == 'mnli-diagnostic':
                continue

            if args.transfer_paradigm == "finetune":
                # Train both the task specific models as well as sentence encoder.
                to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad]
            else: # args.transfer_paradigm == "frozen":
                # Only train task-specific module.
                pred_module = getattr(model, "%s_mdl" % task.name)
                to_train = [(n, p) for n, p in pred_module.named_parameters() if p.requires_grad]
                to_train += elmo_scalars


            # Look for <task_name>_<param_name>, then eval_<param_name>
            trainer, _, opt_params, schd_params = build_trainer(args, [task.name, 'eval'],  model,
                                                                args.run_dir,
                                                                task.val_metric_decreases)
            _ = trainer.train(tasks=[task], stop_metric=task.val_metric, batch_size=args.batch_size,
                              n_batches_per_pass=1, weighting_method=args.weighting_method,
                              scaling_method=args.scaling_method, train_params=to_train,
                              optimizer_params=opt_params, scheduler_params=schd_params,
                              shared_optimizer=args.shared_optimizer, load_model=False, phase="eval")

            # Now that we've trained a model, revert to the normal checkpoint logic for this task.
            if task.name in task_names_to_avoid_loading:
                task_names_to_avoid_loading.remove(task.name)

            # The best checkpoint will accumulate the best parameters for each task.
            # This logic looks strange. We think it works.
            layer_path = os.path.join(args.run_dir, "model_state_eval_best.th")
            if args.transfer_paradigm == "finetune":
                # If we finetune,
                # Save this fine-tune model with a task specific name.
                finetune_path = os.path.join(args.run_dir, "model_state_%s_best.th" % task.name)
                os.rename(layer_path, finetune_path)

                # Reload the original best model from before target-task training.
                pre_finetune_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model, pre_finetune_path, args.cuda, skip_task_models=[], strict=strict)
            else: # args.transfer_paradigm == "frozen":
                # Load the current overall best model.
                # Save the best checkpoint from that target task training to be
                # specific to that target task.
                load_model_state(model, layer_path, args.cuda, strict=strict,
                                 skip_task_models=task_names_to_avoid_loading)

    if args.do_full_eval:
        # Evaluate #
        log.info("Evaluating...")
        splits_to_write = evaluate.parse_write_preds_arg(args.write_preds)
        if args.transfer_paradigm == "finetune":
            for task in target_tasks:
                if task.name == 'mnli-diagnostic': # we'll load mnli-diagnostic during mnli
                    continue

                finetune_path = os.path.join(args.run_dir, "model_state_%s_best.th" % task.name)
                if os.path.exists(finetune_path):
                    ckpt_path = finetune_path
                else:
                    ckpt_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model, ckpt_path, args.cuda, skip_task_models=[], strict=strict)

                tasks = [task]
                if task.name == 'mnli':
                    tasks += [t for t in target_tasks if t.name == 'mnli-diagnostic']
                evaluate_and_write(args, model, tasks, splits_to_write)

        elif args.transfer_paradigm == "frozen":
            evaluate_and_write(args, model, target_tasks, splits_to_write)

    log.info("Done!")