def TestBGCF(forward_net, num_user, num_item, input_dim, test_graph_dataset): """BGCF test wrapper""" user_reps = np.zeros([num_user, input_dim * 3]) item_reps = np.zeros([num_item, input_dim * 3]) for _ in range(50): test_graph_dataset.random_select_sampled_graph() u_test_neighs, u_test_gnew_neighs = test_graph_dataset.get_user_sapmled_neighbor( ) i_test_neighs, i_test_gnew_neighs = test_graph_dataset.get_item_sampled_neighbor( ) u_test_neighs = Tensor(convert_item_id(u_test_neighs, num_user), mstype.int32) u_test_gnew_neighs = Tensor( convert_item_id(u_test_gnew_neighs, num_user), mstype.int32) i_test_neighs = Tensor(i_test_neighs, mstype.int32) i_test_gnew_neighs = Tensor(i_test_gnew_neighs, mstype.int32) users = Tensor(np.arange(num_user).reshape(-1, ), mstype.int32) items = Tensor(np.arange(num_item).reshape(-1, ), mstype.int32) neg_items = Tensor(np.arange(num_item).reshape(-1, 1), mstype.int32) user_rep, item_rep = forward_net(users, items, neg_items, u_test_neighs, u_test_gnew_neighs, i_test_neighs, i_test_gnew_neighs) user_reps += user_rep.asnumpy() item_reps += item_rep.asnumpy() user_reps /= 50 item_reps /= 50 return user_reps, item_reps
def __init__(self, parser, train_graph, test_graph, Ks): self.num_user = train_graph.graph_info()["node_num"][0] self.num_item = train_graph.graph_info()["node_num"][1] self.Ks = Ks self.test_set = [] self.train_set = [] for i in range(0, self.num_user): train_item = train_graph.get_all_neighbors(node_list=[i], neighbor_type=1) train_item = train_item[1:] self.train_set.append(train_item) for i in range(0, self.num_user): test_item = test_graph.get_all_neighbors(node_list=[i], neighbor_type=1) test_item = test_item[1:] self.test_set.append(test_item) self.train_set = convert_item_id(self.train_set, self.num_user).tolist() self.test_set = convert_item_id(self.test_set, self.num_user).tolist() self.item_deg_dict = {} self.item_full_set = [] for i in range(self.num_user, self.num_user + self.num_item): train_users = train_graph.get_all_neighbors(node_list=[i], neighbor_type=0) train_users = train_users.tolist() if isinstance(train_users, int): train_users = [] else: train_users = train_users[1:] self.item_deg_dict[i - self.num_user] = len(train_users) test_users = test_graph.get_all_neighbors(node_list=[i], neighbor_type=0) test_users = test_users.tolist() if isinstance(test_users, int): test_users = [] else: test_users = test_users[1:] self.item_full_set.append(train_users + test_users)
def train(): """Train""" num_user = train_graph.graph_info()["node_num"][0] num_item = train_graph.graph_info()["node_num"][1] num_pairs = train_graph.graph_info()['edge_num'][0] bgcfnet = BGCF([parser.input_dim, num_user, num_item], parser.embedded_dimension, parser.activation, parser.neighbor_dropout, num_user, num_item, parser.input_dim) train_net = TrainBGCF(bgcfnet, parser.num_neg, parser.l2, parser.learning_rate, parser.epsilon, parser.dist_reg) train_net.set_train(True) itr = train_ds.create_dict_iterator(parser.num_epoch, output_numpy=True) num_iter = int(num_pairs / parser.batch_pairs) for _epoch in range(1, parser.num_epoch + 1): epoch_start = time.time() iter_num = 1 for data in itr: u_id = Tensor(data["users"], mstype.int32) pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32) neg_item_id = Tensor( convert_item_id(data["neg_item_id"], num_user), mstype.int32) pos_users = Tensor(data["pos_users"], mstype.int32) pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32) u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32) u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32) u_gnew_neighs = Tensor( convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32) i_group_nodes = Tensor( convert_item_id(data["i_group_nodes"], num_user), mstype.int32) i_neighs = Tensor(data["i_neighs"], mstype.int32) i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32) neg_group_nodes = Tensor( convert_item_id(data["neg_group_nodes"], num_user), mstype.int32) neg_neighs = Tensor(data["neg_neighs"], mstype.int32) neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32) train_loss = train_net(u_id, pos_item_id, neg_item_id, pos_users, pos_items, u_group_nodes, u_neighs, u_gnew_neighs, i_group_nodes, i_neighs, i_gnew_neighs, neg_group_nodes, neg_neighs, neg_gnew_neighs) if iter_num == num_iter: print( 'Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num, 'loss', '{}, cost:{:.4f}'.format(train_loss, time.time() - epoch_start)) iter_num += 1 if _epoch % parser.eval_interval == 0: save_checkpoint( bgcfnet, parser.ckptpath + "/bgcf_epoch{}.ckpt".format(_epoch))
def train_and_eval(): """Train and eval""" num_user = train_graph.graph_info()["node_num"][0] num_item = train_graph.graph_info()["node_num"][1] num_pairs = train_graph.graph_info()['edge_num'][0] bgcfnet = BGCF([parser.input_dim, num_user, num_item], parser.embedded_dimension, parser.activation, parser.neighbor_dropout, num_user, num_item, parser.input_dim) train_net = TrainBGCF(bgcfnet, parser.num_neg, parser.l2, parser.learning_rate, parser.epsilon, parser.dist_reg) train_net.set_train(True) eval_class = BGCFEvaluate(parser, train_graph, test_graph, parser.Ks) itr = train_ds.create_dict_iterator(parser.num_epoch, output_numpy=True) num_iter = int(num_pairs / parser.batch_pairs) for _epoch in range(1, parser.num_epoch + 1): epoch_start = time.time() iter_num = 1 for data in itr: u_id = Tensor(data["users"], mstype.int32) pos_item_id = Tensor(convert_item_id(data["items"], num_user), mstype.int32) neg_item_id = Tensor( convert_item_id(data["neg_item_id"], num_user), mstype.int32) pos_users = Tensor(data["pos_users"], mstype.int32) pos_items = Tensor(convert_item_id(data["pos_items"], num_user), mstype.int32) u_group_nodes = Tensor(data["u_group_nodes"], mstype.int32) u_neighs = Tensor(convert_item_id(data["u_neighs"], num_user), mstype.int32) u_gnew_neighs = Tensor( convert_item_id(data["u_gnew_neighs"], num_user), mstype.int32) i_group_nodes = Tensor( convert_item_id(data["i_group_nodes"], num_user), mstype.int32) i_neighs = Tensor(data["i_neighs"], mstype.int32) i_gnew_neighs = Tensor(data["i_gnew_neighs"], mstype.int32) neg_group_nodes = Tensor( convert_item_id(data["neg_group_nodes"], num_user), mstype.int32) neg_neighs = Tensor(data["neg_neighs"], mstype.int32) neg_gnew_neighs = Tensor(data["neg_gnew_neighs"], mstype.int32) train_loss = train_net(u_id, pos_item_id, neg_item_id, pos_users, pos_items, u_group_nodes, u_neighs, u_gnew_neighs, i_group_nodes, i_neighs, i_gnew_neighs, neg_group_nodes, neg_neighs, neg_gnew_neighs) if iter_num == num_iter: print( 'Epoch', '%03d' % _epoch, 'iter', '%02d' % iter_num, 'loss', '{}, cost:{:.4f}'.format(train_loss, time.time() - epoch_start)) iter_num += 1 if _epoch % parser.eval_interval == 0: if os.path.exists("ckpts/bgcf.ckpt"): os.remove("ckpts/bgcf.ckpt") save_checkpoint(bgcfnet, "ckpts/bgcf.ckpt") bgcfnet_test = BGCF([parser.input_dim, num_user, num_item], parser.embedded_dimension, parser.activation, [0.0, 0.0, 0.0], num_user, num_item, parser.input_dim) load_checkpoint("ckpts/bgcf.ckpt", net=bgcfnet_test) forward_net = ForwardBGCF(bgcfnet_test) user_reps, item_reps = TestBGCF(forward_net, num_user, num_item, parser.input_dim, test_graph_dataset) test_recall_bgcf, test_ndcg_bgcf, \ test_sedp, test_nov = eval_class.eval_with_rep(user_reps, item_reps, parser) if parser.log_name: log.write( 'epoch:%03d, recall_@10:%.5f, recall_@20:%.5f, ndcg_@10:%.5f, ndcg_@20:%.5f, ' 'sedp_@10:%.5f, sedp_@20:%.5f, nov_@10:%.5f, nov_@20:%.5f\n' % (_epoch, test_recall_bgcf[1], test_recall_bgcf[2], test_ndcg_bgcf[1], test_ndcg_bgcf[2], test_sedp[0], test_sedp[1], test_nov[1], test_nov[2])) else: print( 'epoch:%03d, recall_@10:%.5f, recall_@20:%.5f, ndcg_@10:%.5f, ndcg_@20:%.5f, ' 'sedp_@10:%.5f, sedp_@20:%.5f, nov_@10:%.5f, nov_@20:%.5f\n' % (_epoch, test_recall_bgcf[1], test_recall_bgcf[2], test_ndcg_bgcf[1], test_ndcg_bgcf[2], test_sedp[0], test_sedp[1], test_nov[1], test_nov[2]))