示例#1
0
文件: STD.py 项目: MTandHJ/roboc
        running_loss = coach.train(trainloader, epoch=epoch)
        writter.add_scalar("Loss", running_loss, epoch)

    evaluate(valider=valider,
             trainloader=trainloader,
             testloader=testloader,
             acc_logger=acc_logger,
             rob_logger=rob_logger,
             writter=writter,
             epoch=opts.epochs)

    acc_logger.plotter.plot()
    rob_logger.plotter.plot()
    acc_logger.plotter.save(writter)
    rob_logger.plotter.save(writter)


if __name__ == "__main__":
    from torch.utils.tensorboard import SummaryWriter
    from src.utils import mkdirs, readme
    cfg = load_cfg()
    mkdirs(cfg.info_path, cfg.log_path)
    readme(cfg.info_path, opts)
    readme(cfg.log_path, opts, mode="a")
    writter = SummaryWriter(log_dir=cfg.log_path, filename_suffix=METHOD)

    main(**cfg)

    cfg['coach'].save(cfg.info_path)
    writter.close()
示例#2
0
        #     {
        #         "Linf": running_distance_linf[epsilon],
        #         "L2": running_distance_l2[epsilon],
        #     },
        #     epsilon
        # )
    running_accuracy = list(map(lambda x: 1. - x, running_success))

    running_accuracy = ', '.join([f"{acc:.3%}" for acc in running_accuracy])
    running_distance_linf = ', '.join(
        [f"{dis_linf:.5f}" for dis_linf in running_distance_linf])
    running_distance_l2 = ', '.join(
        [f"{dis_l2:.5f}" for dis_l2 in running_distance_l2])

    print(f"Accuracy: {running_accuracy}")
    print(f"Distance-Linf: {running_distance_linf}")
    print(f"Distance-L2: {running_distance_l2}")


if __name__ == "__main__":
    from torch.utils.tensorboard import SummaryWriter
    from src.utils import mkdirs, readme
    cfg, log_path = load_cfg()
    mkdirs(log_path)
    readme(log_path, opts, mode="a")
    writter = SummaryWriter(log_dir=log_path, filename_suffix=METHOD)

    main(**cfg)

    writter.close()