def get_val_dataset(args): dboxes = dboxes300_coco() val_trans = SSDTransformer(dboxes, (300, 300), val=True) val_annotate = os.path.join(args.data, "annotations/instances_val2017.json") val_coco_root = os.path.join(args.data, "val2017") val_coco = COCODetection(val_coco_root, val_annotate, val_trans) return val_coco
def get_train_pytorch_loader(args, num_workers, default_boxes): dataset = COCODetection( args.train_coco_root, args.train_annotate, SSDTransformer(default_boxes, args, (300, 300), val=False)) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( dataset) else: train_sampler = None train_dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), sampler=train_sampler, drop_last=True, num_workers=num_workers) return train_dataloader
def get_train_dataset(args, transform): train_coco = COCODetection(args.train_coco_root, args.train_annotate, transform) return train_coco