total_errors = pd.DataFrame() mean_ratio_errors = pd.DataFrame() max_ratio_errors = pd.DataFrame() min_ratio_errors = pd.DataFrame() max_distances = pd.DataFrame() min_distances = pd.DataFrame() gini_coefficients = pd.DataFrame() mean_idenratio_errors = pd.DataFrame() max_idenratio_errors = pd.DataFrame() min_idenratio_errors = pd.DataFrame() iden_gini_coefficients = pd.DataFrame() for i in range(t): print(i, flush=True) k = np.random.randint(2, k_max + 1) ks.append(k) Ws, Wn, As = workload_selection(W_lst, W_name, A_lst, n, k, rep) res = error_calc(Ws, Ws, n, eps, modes, rep, As=As, Ar=As) results.append(res) names.append(Wn) total_error = OrderedDict() mean_ratio_error = OrderedDict() max_ratio_error = OrderedDict() min_ratio_error = OrderedDict() max_distance = OrderedDict() min_distance = OrderedDict() gini_coefficient = OrderedDict() mean_idenratio_error = OrderedDict() max_idenratio_error = OrderedDict() min_idenratio_error = OrderedDict() iden_gini_coefficient = OrderedDict() for mode in modes:
results = [] names = [] ks = [] total_errors = pd.DataFrame() max_ratio_errors = pd.DataFrame() inters = pd.DataFrame() for i in range(t): print(i, flush=True) k = np.random.randint(2, k_max + 1) ks.append(k) Ws, Wn, As = workload_selection(W_lst, W_name, A_lst, n, k, rep, types=types, prob=0.8) error_base, total_error, max_ratio_error, inter = interference_custom( Ws, As, n, eps, modes, rep) results.append(error_base) names.append(Wn) total_errors = pd.concat( [total_errors, pd.DataFrame(total_error, index=[i])]) max_ratio_errors = pd.concat( [max_ratio_errors, pd.DataFrame(max_ratio_error, index=[i])]) inters = pd.concat([inters, pd.DataFrame(inter, index=[i])]) names = np.asarray(names)