示例#1
0
def import_dem(filein):
    # grid point lists

    # open netCDF file
    # nc_file = "/home/sberton2/Downloads/sresa1b_ncar_ccsm3-example.nc"
    nc_file = filein
    dem_xarr = xr.open_dataset(nc_file)

    lats = np.deg2rad(dem_xarr.lat.values) + np.pi / 2.
    lons = np.deg2rad(dem_xarr.lon.values)  # -np.pi
    data = dem_xarr.z.values

    print("test")
    # Exclude last column because only 0<=lat<pi
    # and 0<=lon<pi are accepted (checked that lon=0 has same values)
    # print(data[:,0]==data[:,-1])
    # kx=ky=1 required not to mess up results!!!!!!!!!! Higher interp orders mess up...
    if True:
        interp_spline = RectBivariateSpline(lats[:-1],
                                            lons[:-1],
                                            data[:-1, :-1],
                                            kx=1,
                                            ky=1)
        pickleIO.save(interp_spline, tmpdir + "interp_dem.pkl")
    else:
        interp_spline = pickleIO.load(tmpdir + "interp_dem.pkl")

    return interp_spline
示例#2
0
def run(seed,sub_len=100):
    vecopts = {}
    xov_ = xov(vecopts)
    xov_ = xov_.load(tmpdir+"dKX_clean.pkl")
    print("Loaded...")

    # dR absolute value taken
    xov_.xovers['dR_orig'] = xov_.xovers.dR
    xov_.xovers['dR'] = xov_.xovers.dR.abs()

    start = time.time()

    # get list of all orbA-orbB giving xov at low lats
    lowlat_xov = xov_.xovers.loc[xov_.xovers.LAT < 50]
    xov_occ = list(zip(lowlat_xov.orbA.values,lowlat_xov.orbB.values))

    xov_occ_str = [a+'-'+b for a, b in xov_occ]

    # build up random combinations of N orbA-orbB
    orbs = pd.DataFrame([xov_.xovers['orbA'].value_counts(), xov_.xovers['orbB'].value_counts()]).T.fillna(0).sum(axis=1)
    print(orbs.index)
    orbs = orbs.index.values

    nxov_old = 0
    np.random.seed(seed)

    for i in range(1000000):
        orb_sel = np.random.choice(orbs, sub_len)

        s = [(a,b) for a,b in list(
            itert.product(orb_sel, orb_sel))
               if a != b]

        sampl_str = [a+'-'+b for a, b in s]
        # print(np.array(sampl_str))
        # intersect = intersect1d_searchsorted(sampl_str,xov_occ_str,assume_unique=True)

        nxov = len(intersection(sampl_str, xov_occ_str))
        if nxov >= nxov_old: # good number based on full database # nxov_old:
            s_max = s
            nxov_old = nxov
            print("New max = ", nxov_old, " @ sample ",i)
            save([np.array(s_max),nxov_old],tmpdir+'bestROItracks'+str(sub_len)+'_'+str(nxov_old)+'-'+str(i)+'.pkl')

    # print(load(tmpdir+'bestROItracks.pkl'))
    # print(nxov_old)
    # print(np.array(s_max))

    end = time.time()

    print("Got it in ", str(end-start), " seconds!")
示例#3
0
def select_from_stats(sol ='KX1', subexp ='0res_1amp', outfil='bestROItracks.pkl'):

    from src.accumxov.Amat import Amat
    from examples.MLA.options import outdir, vecopts
    # import numpy as np

    subfolder = ''
    # sol = 'KX1_0'  # r4_1'
    # subexp = '0res_1amp'

    tmp = Amat(vecopts)
    tmp = tmp.load(outdir + 'sim/' + subfolder + sol + '/' + subexp + '/Abmat_sim_' + sol.split('_')[0] + '_' + str(
        int(sol.split('_')[-1]) + 1) + '_' + subexp + '.pkl')

    xov_df = tmp.xov.xovers
    # remove very large dR (>1km)
    xov_df = xov_df.loc[xov_df['dR'].abs() < 1.e3]
    print(xov_df.columns)
    # print(tmp.weights)
    # exit()
    hilat_xov = xov_df.loc[xov_df.LAT > 60]
    print(hilat_xov[['dR', 'weights', 'huber']].abs().max())
    print(hilat_xov[['dR', 'weights', 'huber']].abs().min())
    print(hilat_xov[['dR', 'weights', 'huber']].abs().mean())
    print(hilat_xov[['dR', 'weights', 'huber']].abs().median())

    to_keep = 1. - 8.e5 / len(hilat_xov)
    to_keep_hilat = hilat_xov.loc[hilat_xov['weights'] > hilat_xov['weights'].quantile(to_keep)].xOvID.values

    lolat_xov = xov_df.loc[xov_df.LAT < 60]
    to_keep_lolat = lolat_xov.loc[lolat_xov['weights'] > lolat_xov['weights'].quantile(0.1)].xOvID.values

    # select very good xovers at LAT>60N OR decent xovers at low latitudes
    selected = xov_df.loc[(xov_df.xOvID.isin(to_keep_hilat)) | (xov_df.xOvID.isin(to_keep_lolat))]
    print(len(selected))
    print(selected[['dR', 'weights', 'huber', 'dist_min_mean']].abs().max())
    print(selected[['dR', 'weights', 'huber', 'dist_min_mean']].abs().min())
    print(selected[['dR', 'weights', 'huber', 'dist_min_mean']].abs().median())
    print(selected[['dR', 'weights', 'huber', 'dist_min_mean']].abs().mean())

    # set of orbits giving
    orbs = list(set(np.hstack([selected.orbA.values, selected.orbB.values])))
    print(orbs)
    print(len(orbs), "orbits giving the 'best'", len(selected), "xovers out of", len(xov_df))

    save([np.array(orbs)], tmpdir + outfil)
    return orbs
示例#4
0
def plot_topo(df):

    fig = plt.figure(figsize=(8, 6), edgecolor='w')
    # m = Basemap(projection='moll', resolution=None,
    #             lat_0=0, lon_0=0)
    m = Basemap(projection='npstere', boundinglat=10, lon_0=0, resolution='l')
    x, y = m(df.LON.values, df.LAT.values)
    map = m.scatter(x, y, c=df['R'].values, s=0.1,
                    cmap='Reds')  # afmhot') # , marker=',', s=3**piv.count(),
    plt.colorbar(map)
    draw_map(m)
    fig.savefig(tmpdir + 'mla_altres_' + sol + '_' + subexp + '.png')
    plt.clf()
    plt.close()

    deg_step = 1
    to_bin = lambda x: np.floor(x / deg_step) * deg_step
    df["latbin"] = df.LAT.map(to_bin)
    df["lonbin"] = df.LON.map(to_bin)
    groups = df.groupby(["latbin", "lonbin"])
    tmpdf = groups.R.apply(lambda x: np.median(x)).reset_index()
    # piv = pd.pivot_table(tmpdf, values="R", index=["latbin"], columns=["lonbin"], fill_value=0)
    # lats = np.deg2rad(piv.index.values) + np.pi / 2.
    # # TODO not sure why sometimes it has to be rescaled
    # lons = np.deg2rad(piv.columns.values) + np.pi
    # data = piv.values
    #
    print("Done groupby and medians")

    # Exclude last column because only 0<=lat<pi
    # and 0<=lon<pi are accepted (checked that lon=0 has same values)
    # print(data[:,0]==data[:,-1])
    # kx=ky=1 required not to mess up results!!!!!!!!!! Higher interp orders mess up...
    # interp_spline = RectBivariateSpline(lats[:-1],
    #                                     lons[:-1],
    #                                     data[:-1, :-1], kx=2, ky=2)
    # interp_spline = RectBivariateSpline(tmpdf.latbin.values,
    #                                     tmpdf.lonbin.values,
    #                                     tmpdf.R.values, kx=2, ky=2)
    start = time.time()

    import scipy.interpolate as interp
    x, y = project_stereographic(tmpdf.lonbin.values,
                                 tmpdf.latbin.values,
                                 0,
                                 90,
                                 R=vecopts['PLANETRADIUS'])

    def euclidean_norm_numpy(x1, x2):
        return np.linalg.norm(x1 - x2, axis=0)

    zfun_smooth_rbf = interp.Rbf(x,
                                 y,
                                 tmpdf.R.values,
                                 function='gaussian',
                                 norm=euclidean_norm_numpy,
                                 smooth=0)
    end = time.time()
    print('----- Runtime interp = ' + str(end - start) + ' sec -----' +
          str((end - start) / 60.) + ' min -----')

    # zfun_smooth_rbf = interp.Rbf(x, y, tmpdf.R.values, function='cubic',
    #                              smooth=0)  # default smooth=0 for interpolation
    pickleIO.save(zfun_smooth_rbf, tmpdir + "interp_R_" + sol + ".pkl")
    # new_lats = np.deg2rad(np.arange(0, 180, 1))
    # new_lons = np.deg2rad(np.arange(0, 360, 1))
    start = time.time()

    xx, yy = np.mgrid[-2000:2000:100j, -2000:2000:100j]
    import dask.array as da

    n1 = xx.shape[1]
    ix = da.from_array(xx, chunks=(1, n1))
    iy = da.from_array(yy, chunks=(1, n1))
    iz = da.map_blocks(zfun_smooth_rbf, ix, iy)
    z_dense_smooth_rbf = iz.compute()
    # z_dense_smooth_rbf = zfun_smooth_rbf(new_lats,
    #                                      new_lons)  # not really a function, but a callable class instance
    fig, ax1 = plt.subplots(nrows=1)
    im = ax1.imshow(z_dense_smooth_rbf, origin='lower',
                    cmap="RdBu")  # vmin=1,vmax=20,cmap="RdBu")
    fig.colorbar(im, ax=ax1, orientation='horizontal')
    fig.savefig(tmpdir + 'test_interp_' + sol + '.png')
    end = time.time()
    print('----- Runtime eval = ' + str(end - start) + ' sec -----' +
          str((end - start) / 60.) + ' min -----')

    # exit()
    #
    # z_dense_smooth_griddata = interp.griddata(np.array([tmpdf.latbin.values.ravel()+90.,tmpdf.lonbin.values.ravel()+180.]).T,
    #                                           tmpdf.R.values.ravel(),
    #                                           (new_lats, new_lons), method='cubic')
    # fig, ax1 = plt.subplots(nrows=1)
    # im = ax1.imshow(z_dense_smooth_griddata, origin='lower', cmap="RdBu")  # vmin=1,vmax=20,cmap="RdBu")
    # fig.colorbar(im, ax=ax1, orientation='horizontal')
    # fig.savefig(tmpdir + 'test_interp_' + sol + '.png')
    # exit()
    # pickleIO.save(interp_spline, tmpdir+"interp_R_"+sol+".pkl")
    # print("Done interp")
    #
    # new_lats = np.deg2rad(np.arange(0, 180, 1))
    # new_lons = np.deg2rad(np.arange(0, 360, 1))
    # new_lats, new_lons = np.meshgrid(new_lats, new_lons)
    # ev = interp_spline.ev(new_lats.ravel(), new_lons.ravel()).reshape((360, 180)).T
    # fig, ax1 = plt.subplots(nrows=1)
    # im = ax1.imshow(ev, origin='lower', cmap="RdBu")  # vmin=1,vmax=20,cmap="RdBu")
    # fig.colorbar(im, ax=ax1, orientation='horizontal')
    # fig.savefig(tmpdir + 'test_interp_' + sol + '.png')

    return interp_spline
示例#5
0
    def interpolate(self):

        # Read required trajectories from spice and interpolate
        startSpInterp = time.time()

        self.MGRx = interp_obj('MGRx')
        self.MGRv = interp_obj('MGRv')
        self.MGRa = interp_obj('MGRa')
        self.MERx = interp_obj('MERx')
        self.MERv = interp_obj('MERv')
        self.SUNx = interp_obj('SUNx')

        tstep = 1

        # Define call times for the SPICE
        try:
            t_spc = self.ladata_df['ET_TX'].values
            # t_spc = np.array(
            #     [x for x in np.arange(self.ladata_df['ET_TX'].min(), self.ladata_df['ET_TX'].max(), tstep)])
            # add 1000s to each side of track to avoid boundary effects
            t_spc = np.hstack([
                t_spc[0] + np.arange(-1000, -1, 1), t_spc,
                t_spc[-1] + np.arange(1, 1000, 1)
            ])

        except:
            print("*** ground_track.py: Issue interpolating ..." + self.name)
            print(self.ladata_df)
            print(self.ladata_df['ET_TX'].min())
            print(self.ladata_df['ET_TX'].max())
            exit(2)

        # print("Start spkezr MGR")
        # trajectory
        xv_spc = np.array([
            spice.spkezr(self.vecopts['SCNAME'], t,
                         self.vecopts['INERTIALFRAME'], 'NONE',
                         self.vecopts['INERTIALCENTER']) for t in t_spc
        ])[:, 0]

        xv_spc = np.reshape(np.concatenate(xv_spc), (-1, 6))

        # print("Start pxform MGR")
        # attitude
        pxform_array = np.frompyfunc(spice.pxform, 3, 1)
        cmat = pxform_array('MSGR_SPACECRAFT', self.vecopts['INERTIALFRAME'],
                            t_spc)
        # m2q_array = np.frompyfunc(spice.m2q, 1, 1)
        # quat = m2q_array(cmat)
        # quat = np.reshape(np.concatenate(quat), (-1, 4))

        # print("Start MGR interpolation")

        self.MGRx.interp([xv_spc[:, i] for i in range(0, 3)], t_spc)
        self.MGRv.interp([xv_spc[:, i] for i in range(3, 6)], t_spc)
        self.MGRa.interpCmat(cmat, t_spc)

        # print("Start spkezr MER")

        xv_pla = np.array([
            spice.spkezr(self.vecopts['PLANETNAME'], t,
                         self.vecopts['INERTIALFRAME'], 'NONE',
                         self.vecopts['INERTIALCENTER']) for t in t_spc
        ])[:, 0]
        xv_pla = np.reshape(np.concatenate(xv_pla), (-1, 6))

        # print("Start MER interpolation")

        self.MERx.interp([xv_pla[:, i] for i in range(0, 3)], t_spc)
        self.MERv.interp([xv_pla[:, i] for i in range(3, 6)], t_spc)

        # print("Start spkezr SUN")

        xv_sun = np.array([
            spice.spkezr('SUN', t, self.vecopts['INERTIALFRAME'], 'NONE',
                         self.vecopts['INERTIALCENTER']) for t in t_spc
        ])[:, 0]
        xv_sun = np.reshape(np.concatenate(xv_sun), (-1, 6))

        # print("Start SUN interpolation")

        self.SUNx.interp([xv_sun[:, i] for i in range(0, 3)], t_spc)

        # save to orbit-wise file
        self.SpObj = {
            'MGRx': self.MGRx,
            'MGRv': self.MGRv,
            'MGRa': self.MGRa,
            'MERx': self.MERx,
            'MERv': self.MERv,
            'SUNx': self.SUNx
        }

        if not os.path.exists(auxdir + spauxdir):
            os.mkdir(auxdir + spauxdir)
        pickleIO.save(self.SpObj,
                      auxdir + spauxdir + 'spaux_' + self.name + '.pkl')

        endSpInterp = time.time()
        if (debug):
            print('----- Runtime SpInterp = ' +
                  str(endSpInterp - startSpInterp) + ' sec -----' +
                  str((endSpInterp - startSpInterp) / 60.) + ' min -----')