示例#1
0
    def __init__(self):
        args = sys.argv
        if "-r" in args:
            self.results_dir_name = args[args.index("-r") + 1]
        else:
            self.results_dir_name = "repeat_pilot_request"

        self.position_normaliser = DynamicNormalizer([-2.4, 2.4], [-1.0, 1.0])
        self.position_deriv_normaliser = DynamicNormalizer([-1.75, 1.75],
                                                           [-1.0, 1.0])
        self.angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
        self.angle_deriv_normaliser = DynamicNormalizer([-0.02, 0.02],
                                                        [-1.0, 1.0])

        self.angle_dt_moving_window = SlidingWindow(5)
        self.last_150_episode_returns = SlidingWindow(150)

        self.thrusters = Thrusters()
        self.env = ROSBehaviourInterface()
        self.environment_info = EnvironmentInfo()

        sub_pilot_position_controller_output = rospy.Subscriber(
            "/pilot/position_pid_output", FloatArray,
            self.positionControllerCallback)

        self.prev_action = 0.0
        self.pos_pid_output = np.zeros(6)
示例#2
0
    def __init__(self):
        args = sys.argv
        if "-r" in args:
            results_dir_name = args[args.index("-r") + 1]
        else:
            results_dir_name = "ga_pid_tuning"
        self.results_dir = "/home/gordon/data/tmp/{0}{1}".format(
            results_dir_name, 0)

        if not os.path.exists(self.results_dir):
            os.makedirs(self.results_dir)
        filename = os.path.basename(sys.argv[0])
        os.system("cp {0} {1}".format(filename, self.results_dir))
        os.system(
            "cp /home/gordon/rosbuild_ws/ros_simple_rl/src/ga_optimization/ga.py {0}"
            .format(self.results_dir))

        # TODO - add DataFrame for evolution history and generation
        self.df_evolution_history = pd.DataFrame()
        self.f_evolution_history = open(
            "{0}{1}".format(self.results_dir, "/evolution_history.csv"), "w",
            1)

        self.position_normaliser = DynamicNormalizer([-2.4, 2.4], [-1.0, 1.0])
        self.position_deriv_normaliser = DynamicNormalizer([-1.75, 1.75],
                                                           [-1.0, 1.0])
        self.angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
        self.angle_deriv_normaliser = DynamicNormalizer([-0.02, 0.02],
                                                        [-1.0, 1.0])

        self.angle_dt_moving_window = SlidingWindow(5)
        self.last_150_episode_returns = SlidingWindow(150)

        self.thrusters = Thrusters()
        self.env = ROSBehaviourInterface()
        self.environment_info = EnvironmentInfo()
        self.baseline_response = optimal_control_response()

        sub_pilot_position_controller_output = rospy.Subscriber(
            "/pilot/position_pid_output", FloatArray,
            self.positionControllerCallback)

        self.prev_action = 0.0
        self.pos_pid_output = np.zeros(6)
示例#3
0
    def __init__(self):
        args = sys.argv
        if "-r" in args:
            self.results_dir_name = args[args.index("-r") + 1]
        else:
            self.results_dir_name = "nessie_run"

        self.position_normaliser = DynamicNormalizer([-2.4, 2.4], [-1.0, 1.0])
        self.position_deriv_normaliser = DynamicNormalizer([-1.75, 1.75],
                                                           [-1.0, 1.0])
        self.angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
        self.angle_deriv_normaliser = DynamicNormalizer([-0.02, 0.02],
                                                        [-1.0, 1.0])

        self.angle_dt_moving_window = SlidingWindow(5)
        self.last_150_episode_returns = SlidingWindow(150)

        self.thrusters = Thrusters()
        self.env = ROSBehaviourInterface()
        self.environment_info = EnvironmentInfo()

        self.ounoise = OUNoise()

        self.prev_action = 0.0
示例#4
0
        results_dir_name = "cartpole_run"

    # initialise some global variables/objects
    # global normalisers
    position_normaliser = DynamicNormalizer([-1.0, 1.0], [-1.0, 1.0])
    position_deriv_normaliser = DynamicNormalizer([-3.0, 3.0], [-1.0, 1.0])
    distance_normaliser = DynamicNormalizer([0.0, 25.0], [-1.0, 1.0])
    distance_reward_normaliser = DynamicNormalizer([0.0, 15.0], [0.0, 1.0])
    angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
    angle_deriv_normaliser = DynamicNormalizer([-0.15, 0.15], [-1.0, 1.0])

    angle_between_vectors = AngleBetweenVectors()
    angle_dt_moving_window = SlidingWindow(5)

    thrusters = Thrusters()
    nessie = ROSBehaviourInterface()
    environment_info = EnvironmentInfo()

    # Loop number of runs
    for run in range(CONFIG["num_runs"]):
        if CONFIG["test_policy"]:
            CONFIG["dir_of_policies_to_load"] = results_to_validate[run]
            if CONFIG["policy_test_type"] == "vali":
                results_dir_name = "validate_{0}".format(
                    CONFIG["dir_of_policies_to_load"].split("/")[-1])
            elif CONFIG["policy_test_type"] == "nessie":
                results_dir_name = "real_{0}".format(
                    CONFIG["dir_of_policies_to_load"].split("/")[-1])
            elif CONFIG["policy_test_type"] == "online_nessie":
                results_dir_name = "online_{0}".format(
                    CONFIG["dir_of_policies_to_load"].split("/")[-1])
示例#5
0
        results_dir_name = "cartpole_run"

    # initialise some global variables/objects
    # global normalisers
    position_normaliser = DynamicNormalizer([-1.0, 1.0], [-1.0, 1.0])
    position_deriv_normaliser = DynamicNormalizer([-3.0, 3.0], [-1.0, 1.0])
    distance_normaliser = DynamicNormalizer([0.0, 25.0], [-1.0, 1.0])
    distance_reward_normaliser = DynamicNormalizer([0.0, 15.0], [0.0, 1.0])
    angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
    angle_deriv_normaliser = DynamicNormalizer([-0.15, 0.15], [-1.0, 1.0])

    angle_between_vectors = AngleBetweenVectors()
    angle_dt_moving_window = SlidingWindow(5)

    thrusters = Thrusters()
    nessie = ROSBehaviourInterface()
    environment_info = EnvironmentInfo()

    # Loop number of runs
    for run in range(CONFIG["num_runs"]):
        if CONFIG["test_policy"]:
            CONFIG["dir_of_policies_to_load"] = results_to_validate[run]
            if CONFIG["policy_test_type"] == "vali":
                results_dir_name = "validate_{0}".format(
                    CONFIG["dir_of_policies_to_load"].split("/")[-1])
            elif CONFIG["policy_test_type"] == "nessie":
                results_dir_name = "real_{0}".format(
                    CONFIG["dir_of_policies_to_load"].split("/")[-1])
        # Create logging directory and files
        results_dir = "/tmp/{0}{1}".format(results_dir_name, run)
        print("results_dir: {0}".format(results_dir))
示例#6
0
class RepeatPilotRequest(object):
    def __init__(self):
        args = sys.argv
        if "-r" in args:
            self.results_dir_name = args[args.index("-r") + 1]
        else:
            self.results_dir_name = "repeat_pilot_request"

        self.position_normaliser = DynamicNormalizer([-2.4, 2.4], [-1.0, 1.0])
        self.position_deriv_normaliser = DynamicNormalizer([-1.75, 1.75],
                                                           [-1.0, 1.0])
        self.angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
        self.angle_deriv_normaliser = DynamicNormalizer([-0.02, 0.02],
                                                        [-1.0, 1.0])

        self.angle_dt_moving_window = SlidingWindow(5)
        self.last_150_episode_returns = SlidingWindow(150)

        self.thrusters = Thrusters()
        self.env = ROSBehaviourInterface()
        self.environment_info = EnvironmentInfo()

        sub_pilot_position_controller_output = rospy.Subscriber(
            "/pilot/position_pid_output", FloatArray,
            self.positionControllerCallback)

        self.prev_action = 0.0
        self.pos_pid_output = np.zeros(6)

    def positionControllerCallback(self, msg):
        self.pos_pid_output = msg.values

    def update_state_t(self):
        raw_angle = deepcopy(self.environment_info.raw_angle_to_goal)
        # print("raw angle:")
        # raw_angle_dt = raw_angle - self.prev_angle_dt_t
        # print("raw angle dt: {0}".format(raw_angle_dt))
        self.state_t = {
            "angle": self.angle_normaliser.scale_value(raw_angle),
            "angle_deriv": self.prev_angle_dt_t
        }
        self.prev_angle_dt_t = deepcopy(raw_angle)

    def update_state_t_p1(self):
        raw_angle = deepcopy(self.environment_info.raw_angle_to_goal)
        angle_tp1 = self.angle_normaliser.scale_value(raw_angle)
        angle_t = self.state_t["angle"]

        abs_angle_tp1 = np.abs(angle_tp1)
        abs_angle_t = np.abs(angle_t)
        if abs_angle_tp1 > abs_angle_t:
            sign = -1
        else:
            sign = 1
        angle_change = sign * abs(abs_angle_tp1 - abs_angle_t)

        # print("angle t: {0}".format(abs_angle_t))
        # print("angle tp1: {0}".format(abs_angle_tp1))
        # print("angle change: {0}".format(angle_change))

        tmp_angle_change = sum(
            self.angle_dt_moving_window.getWindow(angle_change)) / 5.0
        self.state_t_plus_1 = {
            "angle":
            self.angle_normaliser.scale_value(raw_angle),
            "angle_deriv":
            self.angle_deriv_normaliser.scale_value(tmp_angle_change)
        }
        self.prev_angle_dt_t = self.angle_deriv_normaliser.scale_value(
            tmp_angle_change)

    def run(self):
        results_dir = "/home/gordon/data/tmp/{0}{1}".format(
            self.results_dir_name, 0)

        for run in range(CONFIG["num_runs"]):

            # Create logging directory and files
            if not os.path.exists(results_dir):
                os.makedirs(results_dir)
            filename = os.path.basename(sys.argv[0])
            os.system("cp {0} {1}".format(filename, results_dir))
            os.system(
                "cp /home/gordon/rosbuild_ws/ros_simple_rl/src/utilities/repeat_pilot_request.py {0}"
                .format(results_dir))

            # reset stuff for the run
            self.env.nav_reset()
            self.env.reset()
            self.angle_dt_moving_window.reset()
            self.prev_angle_dt_t = 0.0
            self.prev_angle_dt_tp1 = 0.0

            # create log file
            f_actions = open(
                "{0}{1}".format(results_dir, "/actions{0}.csv".format(run)),
                "w", 1)

            start_time = time.time()
            end_time = start_time + CONFIG["run_time"]

            first_step = True

            while time.time() < end_time and not rospy.is_shutdown():

                # send pilot request
                self.env.pilotPublishPositionRequest([0, 0, 0, 0, 0, 0])

                # perform a 'step'
                self.update_state_t()
                rospy.sleep(0.1)
                self.update_state_t_p1()

                # log the current state information
                if first_step:
                    first_step = False
                    state_keys = self.state_t.keys()
                    state_keys.append("action")
                    label_logging_format = "#{" + "}\t{".join(
                        [str(state_keys.index(el))
                         for el in state_keys]) + "}\n"
                    f_actions.write(label_logging_format.format(*state_keys))

                logging_list = self.state_t.values()
                logging_list.append(self.pos_pid_output[5])
                action_logging_format = "{" + "}\t{".join(
                    [str(logging_list.index(el))
                     for el in logging_list]) + "}\n"
                f_actions.write(action_logging_format.format(*logging_list))
示例#7
0
    parser.add_argument("--repeat",
                        type=int,
                        default=1,
                        help="Number of times to repeat the learning process")

    parser.add_argument("--root",
                        type=str,
                        default="runs",
                        help="Root directory name")

    args = parser.parse_args()

    logger = SimpleLogger()
    dir_manager = DirectoryManager(logger, args.root)

    ros_env = ROSBehaviourInterface()

    if args.validate == "":
        for prop_value in PROP_VALUES:
            result_dir = dir_manager.get_next_name("root", "ziegler_pid")

            filename = os.path.basename(sys.argv[0])
            dir_manager["run"] = result_dir
            os.system("cp {0} {1}".format(filename, result_dir))
            os.system(
                "cp /home/gordon/rosbuild_ws/ros_simple_rl/src/ga_optimization/processes/pilot_pid_process.py {0}"
                .format(result_dir))
            # os.system("cp /home/gordon/rosbuild_ws/ros_simple_rl/src/ga_optimization/ga.py {0}".format(
            #     indexed_results_dir))

            process = PilotPidProcess(ros_env, result_dir)
    global episode_number, results_dir
    logNav(log_nav=False, dir_path=results_dir, file_name_descriptor=str(episode_number))

if __name__ == '__main__':
    args = sys.argv
    if "-r" in args:
        results_dir_name = args[args.index("-r") + 1]
    else:
        results_dir_name = "cacla_run"

    rospy.init_node("natural_actor_critic")

    navigation = Nav()
    environmental_data = EnvironmentInfo()
    angle_between_vectors = AngleBetweenVectors()
    ros_behaviour_interface = ROSBehaviourInterface()

    # Set ROS spin rate
    rate = rospy.Rate(CONFIG["spin_rate"])
    rospy.on_shutdown(on_rospyShutdown)

    # Set Thruster Status
    thrusters = Thrusters()

    # initialise some global variables/objects
    # global normalisers
    yaw_velocity_normaliser = DynamicNormalizer([-1.0, 1.0], [0.0, 1.0])
    surge_velocity_normaliser = DynamicNormalizer([-0.6, 0.6], [0.0, 1.0])
    codependant_normaliser = DynamicNormalizer([-0.4, 0.4], [0.0, 1.0])
    distance_normaliser = DynamicNormalizer([0.0, 12.0], [0.0, 1.0])
    angle_to_goal_normaliser = DynamicNormalizer([0.0, 3.14], [0.0, 1.0])
示例#9
0
class OptimizePilotPid(object):
    def __init__(self):
        args = sys.argv
        if "-r" in args:
            results_dir_name = args[args.index("-r") + 1]
        else:
            results_dir_name = "ga_pid_tuning"
        self.results_dir = "/home/gordon/data/tmp/{0}{1}".format(
            results_dir_name, 0)

        if not os.path.exists(self.results_dir):
            os.makedirs(self.results_dir)
        filename = os.path.basename(sys.argv[0])
        os.system("cp {0} {1}".format(filename, self.results_dir))
        os.system(
            "cp /home/gordon/rosbuild_ws/ros_simple_rl/src/ga_optimization/ga.py {0}"
            .format(self.results_dir))

        # TODO - add DataFrame for evolution history and generation
        self.df_evolution_history = pd.DataFrame()
        self.f_evolution_history = open(
            "{0}{1}".format(self.results_dir, "/evolution_history.csv"), "w",
            1)

        self.position_normaliser = DynamicNormalizer([-2.4, 2.4], [-1.0, 1.0])
        self.position_deriv_normaliser = DynamicNormalizer([-1.75, 1.75],
                                                           [-1.0, 1.0])
        self.angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
        self.angle_deriv_normaliser = DynamicNormalizer([-0.02, 0.02],
                                                        [-1.0, 1.0])

        self.angle_dt_moving_window = SlidingWindow(5)
        self.last_150_episode_returns = SlidingWindow(150)

        self.thrusters = Thrusters()
        self.env = ROSBehaviourInterface()
        self.environment_info = EnvironmentInfo()
        self.baseline_response = optimal_control_response()

        sub_pilot_position_controller_output = rospy.Subscriber(
            "/pilot/position_pid_output", FloatArray,
            self.positionControllerCallback)

        self.prev_action = 0.0
        self.pos_pid_output = np.zeros(6)

    def positionControllerCallback(self, msg):
        self.pos_pid_output = msg.values

    def update_state_t(self):
        raw_angle = deepcopy(self.environment_info.raw_angle_to_goal)
        # print("raw angle:")
        # raw_angle_dt = raw_angle - self.prev_angle_dt_t
        # print("raw angle dt: {0}".format(raw_angle_dt))
        self.state_t = {
            "angle": self.angle_normaliser.scale_value(raw_angle),
            "angle_deriv": self.prev_angle_dt_t
        }
        self.prev_angle_dt_t = deepcopy(raw_angle)

    def update_state_t_p1(self):
        raw_angle = deepcopy(self.environment_info.raw_angle_to_goal)
        angle_tp1 = self.angle_normaliser.scale_value(raw_angle)
        angle_t = self.state_t["angle"]

        abs_angle_tp1 = np.abs(angle_tp1)
        abs_angle_t = np.abs(angle_t)
        if abs_angle_tp1 > abs_angle_t:
            sign = -1
        else:
            sign = 1
        angle_change = sign * abs(abs_angle_tp1 - abs_angle_t)

        # print("angle t: {0}".format(abs_angle_t))
        # print("angle tp1: {0}".format(abs_angle_tp1))
        # print("angle change: {0}".format(angle_change))

        tmp_angle_change = sum(
            self.angle_dt_moving_window.getWindow(angle_change)) / 5.0
        self.state_t_plus_1 = {
            "angle":
            self.angle_normaliser.scale_value(raw_angle),
            "angle_deriv":
            self.angle_deriv_normaliser.scale_value(tmp_angle_change)
        }
        self.prev_angle_dt_t = self.angle_deriv_normaliser.scale_value(
            tmp_angle_change)

    def setPidGains(self, posP, posI, posD, velP, velI, velD):
        self.env.enable_pilot(False)
        rospy.set_param("/pilot/controller/pos_n/kp", float(posP))
        rospy.set_param("/pilot/controller/pos_n/ki", float(posI))
        rospy.set_param("/pilot/controller/pos_n/kd", float(posD))
        # rospy.set_param("/pilot/controller/vel_r/kp", str(velP))
        # rospy.set_param("/pilot/controller/vel_r/ki", str(velI))
        # rospy.set_param("/pilot/controller/vel_r/kd", str(velD))
        self.env.enable_pilot(True)

    def run(self):
        # Inputs of the equation.
        ga_state = [0.5, 0.0]

        # Preparing the population
        # Number of the weights we are looking to optimize.
        ga_num_weights = len(ga_state)

        pop_size = (CONFIG["sol_per_pop"], ga_num_weights)

        population = np.random.uniform(low=0.0, high=0.1, size=pop_size)
        f_generation_max = open(
            "{0}{1}".format(self.results_dir, "/generation_history.csv"), "w",
            1)
        global_individual_id = 0
        # TODO - loop generations
        for generation_id in range(CONFIG["num_generations"]):
            generation_df = pd.DataFrame()
            local_individual_id = 0
            print("------- New Generation ----------")
            # TODO - loop over population
            for individual in population:
                print("----Individual----")
                # TODO - Check for similar individual in history and if exists, just use it's fitness
                # individual_df = pd.DataFrame([tuple(individual)])
                # fudge the column names to be consistent with self.df_evolution_history
                # individual_df.rename(columns={0: 1, 1: 2}, inplace=True)

                run_response = True
                match_found = False
                if not self.df_evolution_history.empty:
                    match_found, first_occurance_idx, fitness = self.check_for_existing_individual(
                        individual, ga_num_weights)
                    if match_found:
                        # print("Match found in history for individual, using it's previous fitness: {0}".format(fitness))
                        run_response = False

                if run_response:
                    response = self.get_response(global_individual_id,
                                                 individual)
                    # print("response:")
                    # print_friendly_rounded = np.around(response[0:50, :], decimals=2)
                    # print(print_friendly_rounded)
                    individual_fitness = self.calculate_fitness(response)
                else:
                    individual_fitness = fitness

                individual_copy = deepcopy(individual)
                # gen_row2 = np.array([global_individual_id, individual_copy[0], individual_copy[1], individual_fitness])
                gen_row = pd.DataFrame()

                gen_row[0] = [global_individual_id
                              ] if not match_found else [first_occurance_idx]
                gen_row[1] = [individual_copy[0]]
                gen_row[2] = [individual_copy[1]]
                gen_row[3] = [individual_fitness]
                print("Row being added to generation_df: ")
                print(gen_row)
                generation_df = generation_df.append(gen_row,
                                                     ignore_index=True)
                # if local_individual_id == 0:
                #     gen_df_last_index = generation_df.columns.array[-1]
                #     generation_df.rename(columns={gen_df_last_index: 'fitness'}, inplace=True)

                evolution_row = pd.DataFrame()
                evolution_row[0] = [global_individual_id]
                evolution_row[1] = [individual_copy[0]]
                evolution_row[2] = [individual_copy[1]]
                evolution_row[3] = [individual_fitness]
                self.df_evolution_history = self.df_evolution_history.append(
                    evolution_row, ignore_index=True)
                # print("DataFrame Evolution History: {0}".format(global_individual_id))
                # print(self.df_evolution_history)
                # if global_individual_id == 0:
                #     self.df_evolution_history.rename(
                #                                 columns={self.df_evolution_history.columns.array[-1]: 'fitness'},
                #                                 inplace=True
                #     )
                self.log_entry(self.f_evolution_history, global_individual_id,
                               individual, individual_fitness)

                global_individual_id += 1
                local_individual_id += 1

            # fitness now calculated for population
            # print("----------")
            # print(generation_df.head(8))
            # print("-----=======")
            # print(self.df_evolution_history)
            # print("============")
            # Log the max fitness for the current generation
            best_fitness_idx = generation_df[
                generation_df.columns[-1]].idxmin()
            print("generation row idx of min fitness: {0}".format(
                best_fitness_idx))
            generation_max_fitness = generation_df.iloc[
                best_fitness_idx, generation_df.columns[-1]]
            generation_max_global_id = generation_df.iloc[best_fitness_idx][0]
            generation_max_fitness_individual = generation_df.iloc[
                best_fitness_idx][1:ga_num_weights + 1]
            self.log_entry(f_generation_max, generation_max_global_id,
                           generation_max_fitness_individual,
                           generation_max_fitness)

            fitness = deepcopy(generation_df.iloc[:, -1].array)

            print("Fitness array:")
            print(fitness)
            # Selecting the best parents in the population for mating.
            parents = select_mating_pool(population, fitness,
                                         CONFIG["num_parents_mating"])
            print("parents (best {0}): ".format(CONFIG["num_parents_mating"]))
            print(parents)

            offspring_crossover = crossover(
                parents,
                offspring_size=(pop_size[0] - parents.shape[0],
                                ga_num_weights))

            print("offspring_crossover: {0}".format(offspring_crossover))
            offspring_mutation = mutation(offspring_crossover, num_mutations=2)

            # Creating the new population based on the parents and offspring.
            population[0:parents.shape[0], :] = parents
            population[parents.shape[0]:, :] = offspring_mutation

    def check_for_existing_individual(self, individual, ga_num_weights):
        # print("check_for_existing_individual-> individual: {0}".format(individual))
        evolution_minus_fitness = self.df_evolution_history.iloc[:, 1:
                                                                 ga_num_weights
                                                                 + 1]
        # print("check_for_existing_individual-> evolution_minus_fitness: {0}".format(evolution_minus_fitness))

        match_found = False
        fitness = 9999999
        # TODO - remove loop and use more efficient numpy or pandas routine
        # individual_exists = evolution_minus_fitness[(evolution_minus_fitness == individual_df).all(axis=1)]
        for idx, row in evolution_minus_fitness.iterrows():
            is_close = np.allclose(individual, row.array, atol=0.01)
            if is_close:
                match_found = True
                history_entry = self.df_evolution_history.iloc[idx, :]
                print("match found: ")
                print(history_entry)
                fitness = history_entry.array[-1]
                break
        return match_found, idx, fitness

    def log_entry(self, file, id, individual, fitness):
        delimiter = "\t"
        ind_str = '\t'.join(map(str, individual))
        entry = "{0}{1}{2}{3}{4}\n".format(id, delimiter, ind_str, delimiter,
                                           fitness)
        file.write(entry)

    def calculate_fitness(self, response):
        diff = abs(response) - abs(self.baseline_response)
        max_idx = 100  # response.shape[0]
        step_errors = []

        for idx in range(max_idx):
            r = response[idx, 1]
            b = self.baseline_response[idx, 1]
            step_error = 0.0
            if r > b:
                step_error = r - b
            else:
                step_error = b - r
            step_errors.append(step_error)

        fitness = sum(step_errors)  # / len(step_errors)
        return fitness

    def get_response(self, id, individual):
        # reset stuff for the run
        self.env.nav_reset()
        # Set usable gains for DoHover action to get to initial position again
        # position sim gains: { "kp": 0.35, "ki": 0.0, "kd": 0.0 }
        # velocity sim gains: { "kp": 35.0, "ki": 0.0, "kd": 0.0 }
        self.setPidGains(0.35, 0, 0, 0, 0, 0)
        self.env.reset(disable_behaviours=False)
        self.angle_dt_moving_window.reset()
        self.prev_angle_dt_t = 0.0
        self.prev_angle_dt_tp1 = 0.0

        # Set the gains to those of the individual/solution
        self.setPidGains(individual[0], 0, individual[1], 0, 0, 0)

        # create log file
        f_actions = open(
            "{0}{1}".format(self.results_dir, "/actions{0}.csv".format(id)),
            "w", 1)

        start_time = time.time()
        end_time = start_time + CONFIG["run_time"]

        first_step = True
        response = np.zeros([350, 2])
        timestep = 0
        while time.time() < end_time and not rospy.is_shutdown():

            # send pilot request
            self.env.pilotPublishPositionRequest([0, 0, 0, 0, 0, 0])

            # perform a 'step'
            self.update_state_t()
            rospy.sleep(0.1)
            self.update_state_t_p1()

            # log the current state information
            if first_step:
                first_step = False
                state_keys = self.state_t.keys()
                state_keys.append("baseline_angle")
                state_keys.append("action")
                label_logging_format = "#{" + "}\t{".join(
                    [str(state_keys.index(el)) for el in state_keys]) + "}\n"
                f_actions.write(label_logging_format.format(*state_keys))

            logging_list = self.state_t.values()
            logging_list.append(self.baseline_response[timestep, 1])
            logging_list.append(self.pos_pid_output[5])
            action_logging_format = "{" + "}\t{".join(
                [str(logging_list.index(el)) for el in logging_list]) + "}\n"
            response[timestep, :] = [timestep, logging_list[0]]
            timestep += 1
            f_actions.write(action_logging_format.format(*logging_list))
        return response
示例#10
0
class NessieRlSimulation(object):
    def __init__(self):
        args = sys.argv
        if "-r" in args:
            self.results_dir_name = args[args.index("-r") + 1]
        else:
            self.results_dir_name = "nessie_run"

        self.position_normaliser = DynamicNormalizer([-2.4, 2.4], [-1.0, 1.0])
        self.position_deriv_normaliser = DynamicNormalizer([-1.75, 1.75],
                                                           [-1.0, 1.0])
        self.angle_normaliser = DynamicNormalizer([-3.14, 3.14], [-1.0, 1.0])
        self.angle_deriv_normaliser = DynamicNormalizer([-0.02, 0.02],
                                                        [-1.0, 1.0])

        self.angle_dt_moving_window = SlidingWindow(5)
        self.last_150_episode_returns = SlidingWindow(150)

        self.thrusters = Thrusters()
        self.env = ROSBehaviourInterface()
        self.environment_info = EnvironmentInfo()

        self.ounoise = OUNoise()

        self.prev_action = 0.0

    def update_critic(self, reward, update):
        state_t_value = self.approx_critic.computeOutput(self.state_t.values())
        state_t_p1_value = self.approx_critic.computeOutput(
            self.state_t_plus_1.values())
        # print("state t: {0}".format(state_t_value))
        # print("state tp1: {0}".format(state_t_p1_value))

        if CONFIG["critic algorithm"] == "ann_trad":
            td_error = reward + (CONFIG["gamma"] *
                                 state_t_p1_value) - state_t_value
        elif CONFIG["critic algorithm"] == "ann_true":
            td_error = reward + (CONFIG["gamma"] * state_t_p1_value) - \
            self.approx_critic.computeOutputThetaMinusOne(self.state_t.values())
        prev_critic_weights = self.approx_critic.getParams()
        critic_gradient = self.approx_critic.calculateGradient(
            self.state_t.values())
        self.traces_policy.updateTrace(
            self.approx_policy.calculateGradient(self.state_t.values()), 1.0)

        if update:
            p = self.approx_critic.getParams()
            if CONFIG["critic algorithm"] == "ann_trad":
                self.traces_critic.updateTrace(critic_gradient,
                                               1.0)  # for standard TD(lambda)
                X, T = self.traces_critic.getTraces()
                for x, trace in zip(X, T):
                    # print("updating critic using gradient vector: {0}\t{1}".format(x, trace))
                    p += critic_config["alpha"] * td_error * (x * trace)
                # self.approx_critic.setParams(prev_critic_weights + CONFIG["critic_config"]["alpha"] * td_error * critic_gradient)
            elif CONFIG["critic algorithm"] == "ann_true":
                # For True TD(lambda)
                #print("UPDATING ANN CRITC with TRUE TD(lambda)")
                self.traces_critic.updateTrace(
                    critic_gradient)  # for True TD(lambda)
                part_1 = td_error * self.traces_critic.e
                part_2 = critic_config["alpha"] * \
                        np.dot((self.approx_critic.computeOutputThetaMinusOne(self.state_t.values()) - state_t_value), critic_gradient)
                p += part_1 + part_2

            self.approx_critic.setParams(p)
        return (td_error, critic_gradient, state_t_value, state_t_p1_value)

    def update_state_t(self):
        raw_angle = deepcopy(self.environment_info.raw_angle_to_goal)
        # print("raw angle:")
        # raw_angle_dt = raw_angle - self.prev_angle_dt_t
        # print("raw angle dt: {0}".format(raw_angle_dt))
        self.state_t = {
            "angle": self.angle_normaliser.scale_value(raw_angle),
            "angle_deriv": self.prev_angle_dt_t
        }
        self.prev_angle_dt_t = deepcopy(raw_angle)

    def update_state_t_p1(self):
        raw_angle = deepcopy(self.environment_info.raw_angle_to_goal)
        angle_tp1 = self.angle_normaliser.scale_value(raw_angle)
        angle_t = self.state_t["angle"]

        # if (abs(angle_t)) > 0.5:
        #     if angle_t > 0 and angle_tp1 < 0:
        #         angle_change = (1.0 - angle_t) + (-1.0 - angle_tp1)
        #     elif angle_t < 0 and angle_tp1 > 0:
        #         angle_change = (1.0 - angle_tp1) + (-1.0 - angle_t)
        #     else:
        #         angle_change = angle_tp1 - angle_t
        # else:
        abs_angle_tp1 = np.abs(angle_tp1)
        abs_angle_t = np.abs(angle_t)
        if abs_angle_tp1 > abs_angle_t:
            sign = -1
        else:
            sign = 1
        angle_change = sign * abs(abs_angle_tp1 - abs_angle_t)

        # print("angle t: {0}".format(abs_angle_t))
        # print("angle tp1: {0}".format(abs_angle_tp1))
        # print("angle change: {0}".format(angle_change))

        tmp_angle_change = sum(
            self.angle_dt_moving_window.getWindow(angle_change)) / 5.0
        self.state_t_plus_1 = {
            "angle":
            self.angle_normaliser.scale_value(raw_angle),
            "angle_deriv":
            self.angle_deriv_normaliser.scale_value(tmp_angle_change)
        }
        self.prev_angle_dt_t = self.angle_deriv_normaliser.scale_value(
            tmp_angle_change)

    def update_policy(self, td_error, exploration):
        UPDATE_CONDITION = False
        if CONFIG["actor update rule"] == "cacla":
            if td_error > 0.0:
                UPDATE_CONDITION = True
            else:
                UPDATE_CONDITION = False
        elif CONFIG["actor update rule"] == "td lambda":
            UPDATE_CONDITION = True

        if UPDATE_CONDITION:
            # get original values
            params = self.approx_policy.getParams()
            old_action = self.approx_policy.computeOutput(
                self.state_t.values())
            policy_gradient = self.approx_policy.calculateGradient()

            # now update
            if CONFIG["actor update rule"] == "cacla":
                # policy.setParams(params + actor_config["alpha"] * (policy_gradient * exploration))
                X, T = self.traces_policy.getTraces()
                p = self.approx_policy.getParams()
                #print("Number of traces: {0}".format(len(T)))
                for x, trace in zip(X, T):
                    # print("updating critic using gradient vector: {0}\t{1}".format(x, trace))
                    p += actor_config["alpha"] * (x * trace) * exploration
                self.approx_policy.setParams(p)
            else:
                self.approx_policy.setParams(params + actor_config["alpha"] *
                                             (policy_gradient * td_error))

    def run(self):
        # Loop number of runs
        if CONFIG["test_policy"]:
            runs = TEST_CONFIG["run_numbers"]
        else:
            runs = range(CONFIG["num_runs"])

        for run in runs:
            if CONFIG["test_policy"]:
                self.results_dir_name = "nessie_validate_{0}".format(
                    TEST_CONFIG["folder"])
                results_to_load_directory = "/tmp/{0}{1}".format(
                    TEST_CONFIG["folder"], run)
            # Create logging directory and files
            results_dir = "/home/gordon/data/tmp/{0}{1}".format(
                self.results_dir_name, run)
            if not os.path.exists(results_dir):
                os.makedirs(results_dir)
            filename = os.path.basename(sys.argv[0])
            os.system("cp {0} {1}".format(filename, results_dir))
            os.system(
                "cp /home/gordon/rosbuild_ws/ros_simple_rl/src/srl/environments/ros_behaviour_interface.py {0}"
                .format(results_dir))
            os.system(
                "cp /home/gordon/rosbuild_ws/ros_simple_rl/src/utilities/orstein_exploration.py {0}"
                .format(results_dir))

            if CONFIG["test_policy"]:
                os.system("cp {0}/Epi* {1}/LearningEpisodeReturn.fso".format(
                    results_to_load_directory, results_dir))
                os.system("cp {0}/basic* {1}/LearningMainScript.py".format(
                    results_to_load_directory, results_dir))

            f_returns = open(
                "{0}{1}".format(results_dir, "/EpisodeReturn.fso"), "w", 1)

            # policies and critics
            self.approx_critic = ANNApproximator(
                actor_config["num_input_dims"],
                actor_config["num_hidden_units"],
                hlayer_activation_func="tanh")
            if not CONFIG["generate_initial_weights"]:
                critic_init = "/home/gordon/data/tmp/critic_params_48h.npy"
                self.approx_critic.setParams(list(np.load(critic_init)))

            self.approx_policy = ANNApproximator(
                actor_config["num_input_dims"],
                actor_config["num_hidden_units"],
                hlayer_activation_func="tanh")
            if not CONFIG["generate_initial_weights"]:
                policy_init = "/home/gordon/data/tmp/initial_2dim_48h_policy_params.npy"
                self.approx_policy.setParams(list(np.load(policy_init)))

            # if CONFIG["test_policy"] is True:
            #    if not os.path.exists("/tmp/{0}".format(results_to_validate)):
            #        continue
            #self.approx_policy.setParams()
            prev_critic_gradient = np.zeros(
                self.approx_critic.getParams().shape)

            # Set up trace objects
            if CONFIG["critic algorithm"] == "ann_trad":
                self.traces_critic = Traces(CONFIG["lambda"],
                                            CONFIG["min_trace_value"])
            elif CONFIG["critic algorithm"] == "ann_true":
                self.traces_critic = TrueTraces(critic_config["alpha"],
                                                CONFIG["gamma"],
                                                CONFIG["lambda"])
            self.traces_policy = Traces(CONFIG["lambda"],
                                        CONFIG["min_trace_value"])

            exploration_sigma = CONFIG["exploration_sigma"]

            for episode_number in range(CONFIG["num_episodes"]):

                if CONFIG["test_policy"] and episode_number not in TEST_CONFIG[
                        "episode_numbers"]:
                    # don't do anything for the episode number if we are testing policies and
                    # this episodes policy is not in the list to test
                    continue

                reward_cum = 0.0
                reward_cum_greedy = 0.0

                if episode_number % CONFIG["log_actions"] == 0:
                    f_actions = open(
                        "{0}{1}".format(
                            results_dir,
                            "/actions{0}.csv".format(episode_number)), "w", 1)

                # If testing a learnt policy, load it
                if CONFIG["test_policy"]:
                    policy_to_load = "{0}/policy_params{1}.npy".format(
                        results_to_load_directory, episode_number)
                    critic_to_load = "{0}/critic_params{1}.npy".format(
                        results_to_load_directory, episode_number)

                    print("policy_to_load: {0}".format(policy_to_load))
                    self.approx_policy.setParams(list(np.load(policy_to_load)))
                    self.approx_critic.setParams(list(np.load(critic_to_load)))

                # reset everything for the next episode
                self.traces_critic.reset()
                self.traces_policy.reset()

                # self.env.nav_reset()
                self.env.reset()
                self.ounoise.reset()

                self.angle_dt_moving_window.reset()

                episode_ended = False
                episode_ended_learning = False

                # if episode_number > 5 and exploration_sigma > 0.1:
                exploration_sigma *= CONFIG["exploration_decay"]

                self.prev_angle_dt_t = 0.0
                self.prev_angle_dt_tp1 = 0.0

                if CONFIG["generate_initial_weights"]:
                    self.approx_policy = ANNApproximator(
                        actor_config["num_input_dims"],
                        actor_config["num_hidden_units"],
                        hlayer_activation_func="tanh")

                for step_number in range(CONFIG["max_num_steps"]):
                    # Update the state for timestep t
                    self.update_state_t()

                    action_t_deterministic = self.approx_policy.computeOutput(
                        self.state_t.values())

                    # if episode_number > 9:
                    #     control_rate = 0.5
                    # else:
                    control_rate = 3
                    if step_number % (control_rate * CONFIG["spin_rate"]) == 0:
                        # exploration = self.ounoise.get_action(action_t_deterministic)
                        # exploration = np.random.normal(0.0, exploration_sigma)
                        tmp_action = self.ounoise.get_action(
                            action_t_deterministic)[0]
                        exploration = tmp_action - action_t_deterministic

                        # exploration = self.ounoise.function(action_t_deterministic, 0, 0.2, 0.1)[0]
                    # else:
                    #    action_t = deepcopy(self.prev_action)

                    # self.prev_action = deepcopy(action_t)

                    if not CONFIG["generate_initial_weights"] and not CONFIG[
                            "test_policy"]:
                        action_t = np.clip(
                            action_t_deterministic + exploration, -10, 10)
                    else:
                        action_t = np.clip(action_t_deterministic, -10, 10)

                    # TODO - investigate what happens with the action!!!
                    self.env.performAction("gaussian_variance", action_t)

                    # TODO - time rather than rospy.sleep?!
                    time.sleep(1.0 / CONFIG["spin_rate"])

                    # Update the state for timestep t + 1, after action is performed
                    self.update_state_t_p1()

                    to_end = False
                    # if self.state_t["angle"] > 0.9:
                    #     reward = -10
                    #     to_end = True
                    # else:
                    reward = self.env.getReward(self.state_t_plus_1, action_t)

                    if not episode_ended_learning:
                        if not CONFIG["generate_initial_weights"]:
                            # ---- Critic Update ----
                            (td_error, critic_gradient, state_t_value,
                             state_tp1_value) = self.update_critic(
                                 reward, not CONFIG["test_policy"])

                            if episode_number % CONFIG["log_actions"] == 0:
                                if step_number == 0:
                                    state_keys = self.state_t.keys()
                                    state_keys.append("exploration")
                                    state_keys.append("reward")
                                    state_keys.append("tde")
                                    state_keys.append("st")
                                    state_keys.append("stp1")
                                    state_keys.append("explore_action")
                                    state_keys.append("action")
                                    label_logging_format = "#{" + "}\t{".join([
                                        str(state_keys.index(el))
                                        for el in state_keys
                                    ]) + "}\n"
                                    f_actions.write(
                                        label_logging_format.format(
                                            *state_keys))

                                logging_list = self.state_t.values()
                                logging_list.append(exploration)
                                logging_list.append(reward)
                                logging_list.append(td_error)
                                logging_list.append(state_t_value)
                                logging_list.append(state_tp1_value)
                                logging_list.append(action_t)
                                logging_list.append(action_t_deterministic)
                                action_logging_format = "{" + "}\t{".join([
                                    str(logging_list.index(el))
                                    for el in logging_list
                                ]) + "}\n"
                                f_actions.write(
                                    action_logging_format.format(
                                        *logging_list))

                            if not CONFIG["test_policy"]:
                                # ---- Policy Update -------
                                self.update_policy(td_error, exploration)

                            prev_critic_gradient = deepcopy(critic_gradient)

                        reward_cum += reward
                        if to_end:
                            reward_cum = -3000  # for logging only
                            break

                    # TODO - add check for if episode ended early. i.e. moving average
                    """ episode_ended_learning = self.env.episodeEnded()

                     if episode_ended_learning:
                        # episode complete, start a new one
                        break """
                # episode either ended early due to failure or completed max number of steps
                print("Episode ended - Learning {0} {1}".format(
                    episode_number, reward_cum))

                f_returns.write("{0}\t{1}\n".format(episode_number,
                                                    reward_cum))

                np.save(
                    "{0}/policy_params{1}".format(results_dir, episode_number),
                    self.approx_policy.getParams())
                np.save(
                    "{0}/critic_params{1}".format(results_dir, episode_number),
                    self.approx_critic.getParams())