def _built_net(self): self.end_points = {} # 用来记录用于检测的特征层 self._images = tf.placeholder(tf.float32, shape=[None,self.ssd_params.img_shape[0],self.ssd_params.img_shape[1],3]) # 输入图片的占位节点 with tf.variable_scope('ssd_300_vgg'): # “ssd_300_vgg”不能修改,否则导入模型会找不到 # 【1】原来经典的vgg layers # -----------------------------block 1------------------------------- net = conv2d(self._images, filters=64, kernel_size=3, scope='conv1_1') net = conv2d(net, 64, 3, scope='conv1_2') self.end_points['block1'] = net net = max_pool2d(net, pool_size=2, scope='pool1') # ----------------------------block 2-------------------------------- net = conv2d(net, 128, 3, scope='conv2_1') net = conv2d(net, 128, 3, scope='conv2_2') self.end_points['block2'] = net net = max_pool2d(net, 2, scope='pool2') # ----------------------------block 3-------------------------------- net = conv2d(net, 256, 3, scope="conv3_1") net = conv2d(net, 256, 3, scope="conv3_2") net = conv2d(net, 256, 3, scope="conv3_3") self.end_points["block3"] = net net = max_pool2d(net, 2, scope="pool3") # ---------------------------block 4--------------------------------- net = conv2d(net, 512, 3, scope="conv4_1") net = conv2d(net, 512, 3, scope="conv4_2") net = conv2d(net, 512, 3, scope="conv4_3") self.end_points["block4"] = net net = max_pool2d(net, 2, scope="pool4") # ---------------------------block 5--------------------------------- net = conv2d(net, 512, 3, scope="conv5_1") net = conv2d(net, 512, 3, scope="conv5_2") net = conv2d(net, 512, 3, scope="conv5_3") self.end_points["block5"] = net # print(net) net = max_pool2d(net, pool_size=3, stride=1, scope="pool5") # 核大小为3*3,步长为1 # print(net) # 【2】添加的SSD layers # ---------------------------block 6--------------------------------- net = conv2d(net, filters=1024, kernel_size=3, dilation_rate=6, scope='conv6') # 使用空洞卷积(带膨胀系数的dilate conv) self.end_points['block6'] = net # net = dropout(net, is_training=self.is_training) # ---------------------------block 7--------------------------------- net = conv2d(net, 1024, 1, scope='conv7') self.end_points['block7'] = net # ---------------------------block 8--------------------------------- net = conv2d(net, 256, 1, scope='conv8_1x1') net = conv2d(pad2d(net,1), 512, 3, stride=2, scope='conv8_3x3', padding='valid') self.end_points['block8'] = net # ---------------------------block 9--------------------------------- net = conv2d(net, 128, 1, scope="conv9_1x1") net = conv2d(pad2d(net, 1), 256, 3, stride=2, scope="conv9_3x3", padding="valid") self.end_points["block9"] = net # ---------------------------block 10-------------------------------- net = conv2d(net, 128, 1, scope="conv10_1x1") net = conv2d(net, 256, 3, scope="conv10_3x3", padding="valid") self.end_points["block10"] = net # ---------------------------block 11-------------------------------- net = conv2d(net, 128, 1, scope="conv11_1x1") net = conv2d(net, 256, 3, scope="conv11_3x3", padding="valid") self.end_points["block11"] = net predictions = [] locations = [] for i, layer in enumerate(self.ssd_params.feature_layers): cls, loc = ssd_multibox_layer(self.end_points[layer], self.ssd_params.num_classes, self.ssd_params.anchor_sizes[i], self.ssd_params.anchor_ratios[i], self.ssd_params.normalizations[i], scope=layer + '_box') # 从相应的layer层预测出类别和位置 predictions.append(tf.nn.softmax(cls)) # 解码class得分:用softmax函数 locations.append(loc) # 解码边界框位置xywh return predictions, locations
def _built_net(self): """Construct the SSD net""" self.end_points = {} # record the detection layers output self._images = tf.placeholder(tf.float32, shape=[ None, self.ssd_params.img_shape[0], self.ssd_params.img_shape[1], 3 ]) with tf.variable_scope("ssd_300_vgg"): # original vgg layers # block 1 net = conv2d(self._images, 64, 3, scope="conv1_1") net = conv2d(net, 64, 3, scope="conv1_2") self.end_points["block1"] = net net = max_pool2d(net, 2, scope="pool1") # block 2 net = conv2d(net, 128, 3, scope="conv2_1") net = conv2d(net, 128, 3, scope="conv2_2") self.end_points["block2"] = net net = max_pool2d(net, 2, scope="pool2") # block 3 net = conv2d(net, 256, 3, scope="conv3_1") net = conv2d(net, 256, 3, scope="conv3_2") net = conv2d(net, 256, 3, scope="conv3_3") self.end_points["block3"] = net net = max_pool2d(net, 2, scope="pool3") # block 4 net = conv2d(net, 512, 3, scope="conv4_1") net = conv2d(net, 512, 3, scope="conv4_2") net = conv2d(net, 512, 3, scope="conv4_3") self.end_points["block4"] = net net = max_pool2d(net, 2, scope="pool4") # block 5 net = conv2d(net, 512, 3, scope="conv5_1") net = conv2d(net, 512, 3, scope="conv5_2") net = conv2d(net, 512, 3, scope="conv5_3") self.end_points["block5"] = net print(net) net = max_pool2d(net, 3, stride=1, scope="pool5") print(net) # additional SSD layers # block 6: use dilate conv net = conv2d(net, 1024, 3, dilation_rate=6, scope="conv6") self.end_points["block6"] = net #net = dropout(net, is_training=self.is_training) # block 7 net = conv2d(net, 1024, 1, scope="conv7") self.end_points["block7"] = net # block 8 net = conv2d(net, 256, 1, scope="conv8_1x1") net = conv2d(pad2d(net, 1), 512, 3, stride=2, scope="conv8_3x3", padding="valid") self.end_points["block8"] = net # block 9 net = conv2d(net, 128, 1, scope="conv9_1x1") net = conv2d(pad2d(net, 1), 256, 3, stride=2, scope="conv9_3x3", padding="valid") self.end_points["block9"] = net # block 10 net = conv2d(net, 128, 1, scope="conv10_1x1") net = conv2d(net, 256, 3, scope="conv10_3x3", padding="valid") self.end_points["block10"] = net # block 11 net = conv2d(net, 128, 1, scope="conv11_1x1") net = conv2d(net, 256, 3, scope="conv11_3x3", padding="valid") self.end_points["block11"] = net # class and location predictions predictions = [] logits = [] locations = [] for i, layer in enumerate(self.ssd_params.feat_layers): cls, loc = ssd_multibox_layer( self.end_points[layer], self.ssd_params.num_classes, self.ssd_params.anchor_sizes[i], self.ssd_params.anchor_ratios[i], self.ssd_params.normalizations[i], scope=layer + "_box") predictions.append(tf.nn.softmax(cls)) logits.append(cls) locations.append(loc) return predictions, logits, locations
def _built_net(self): """Construct the SSD net""" self.end_points = {} # record the detection layers output self._images = tf.placeholder(tf.float32, shape=[None, self.ssd_params.img_shape[0], self.ssd_params.img_shape[1], 3]) with tf.variable_scope("ssd_300_vgg"): # original vgg layers # block 1 net = conv2d(self._images, 64, 3, scope="conv1_1") net = conv2d(net, 64, 3, scope="conv1_2") self.end_points["block1"] = net net = max_pool2d(net, 2, scope="pool1") # block 2 net = conv2d(net, 128, 3, scope="conv2_1") net = conv2d(net, 128, 3, scope="conv2_2") self.end_points["block2"] = net net = max_pool2d(net, 2, scope="pool2") # block 3 net = conv2d(net, 256, 3, scope="conv3_1") net = conv2d(net, 256, 3, scope="conv3_2") net = conv2d(net, 256, 3, scope="conv3_3") self.end_points["block3"] = net net = max_pool2d(net, 2, scope="pool3") # block 4 net = conv2d(net, 512, 3, scope="conv4_1") net = conv2d(net, 512, 3, scope="conv4_2") net = conv2d(net, 512, 3, scope="conv4_3") self.end_points["block4"] = net net = max_pool2d(net, 2, scope="pool4") # block 5 net = conv2d(net, 512, 3, scope="conv5_1") net = conv2d(net, 512, 3, scope="conv5_2") net = conv2d(net, 512, 3, scope="conv5_3") self.end_points["block5"] = net print(net) net = max_pool2d(net, 3, stride=1, scope="pool5") print(net) # additional SSD layers # block 6: use dilate conv net = conv2d(net, 1024, 3, dilation_rate=6, scope="conv6") self.end_points["block6"] = net #net = dropout(net, is_training=self.is_training) # block 7 net = conv2d(net, 1024, 1, scope="conv7") self.end_points["block7"] = net # block 8 net = conv2d(net, 256, 1, scope="conv8_1x1") net = conv2d(pad2d(net, 1), 512, 3, stride=2, scope="conv8_3x3", padding="valid") self.end_points["block8"] = net # block 9 net = conv2d(net, 128, 1, scope="conv9_1x1") net = conv2d(pad2d(net, 1), 256, 3, stride=2, scope="conv9_3x3", padding="valid") self.end_points["block9"] = net # block 10 net = conv2d(net, 128, 1, scope="conv10_1x1") net = conv2d(net, 256, 3, scope="conv10_3x3", padding="valid") self.end_points["block10"] = net # block 11 net = conv2d(net, 128, 1, scope="conv11_1x1") net = conv2d(net, 256, 3, scope="conv11_3x3", padding="valid") self.end_points["block11"] = net # class and location predictions predictions = [] logits = [] locations = [] for i, layer in enumerate(self.ssd_params.feat_layers): cls, loc = ssd_multibox_layer(self.end_points[layer], self.ssd_params.num_classes, self.ssd_params.anchor_sizes[i], self.ssd_params.anchor_ratios[i], self.ssd_params.normalizations[i], scope=layer+"_box") predictions.append(tf.nn.softmax(cls)) logits.append(cls) locations.append(loc) return predictions, logits, locations