def main():
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    torch.multiprocessing.set_start_method('spawn')
    data_list = load_data(cityscape_img_dir, cityscape_label_dir)
    random.shuffle(data_list)
    num_total_items = len(data_list)
    net = SSD(5)

    # Training set, ratio: 80%
    num_train_sets = 0.8 * num_total_items
    train_set_list = data_list[:int(num_train_sets)]
    validation_set_list = data_list[int(num_train_sets):]

    # Create dataloaders for training and validation
    train_dataset = CityScapeDataset(train_set_list)
    train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                    batch_size=8,
                                                    shuffle=True,
                                                    num_workers=0)
    print('Total training items',
          len(train_dataset), ', Total training mini-batches in one epoch:',
          len(train_data_loader))

    validation_dataset = CityScapeDataset(validation_set_list)
    validation_data_loader = torch.utils.data.DataLoader(validation_dataset,
                                                         batch_size=8,
                                                         shuffle=True,
                                                         num_workers=0)
    print('Total validation items:', len(validation_dataset))
    if Tuning:
        net_state = torch.load(os.path.join(pth_path, 'ssd_net.pth'))
        print('Loading trained model: ', os.path.join(pth_path, 'ssd_net.pth'))
        net.load_state_dict(net_state)
    train(net, train_data_loader, validation_data_loader)
learning_rate = 0.001
max_epochs = 20

test_list = get_list(img_dir, label_dir)
# test_list = test_list[0:-20]
test_dataset = csd.CityScapeDataset(test_list, train=False, show=False)
test_data_loader = torch.utils.data.DataLoader(test_dataset,
                                               batch_size=16,
                                               shuffle=False,
                                               num_workers=0)
print('test items:', len(test_dataset))

file_name = 'SSD'
test_net_state = torch.load(os.path.join('.', file_name + '.pth'))

net = SSD(3)
if use_gpu:
    net = net.cuda()
net.load_state_dict(test_net_state)
itr = 0

net.eval()
for test_batch_idx, (loc_targets, conf_targets,
                     imgs) in enumerate(test_data_loader):
    itr += 1
    imgs = imgs.permute(0, 3, 1, 2).contiguous()
    if use_gpu:
        imgs = imgs.cuda()
    imgs = Variable(imgs)
    conf, loc = net.forward(imgs)
    conf = conf[0, ...]
示例#3
0
train_data_loader = torch.utils.data.DataLoader(train_dataset,
                                                batch_size=32,
                                                shuffle=True,
                                                num_workers=0)
# print('train items:', len(train_dataset))

idx, (bbox, label, img) = next(enumerate(train_data_loader))

# valid_dataset = csd.CityScapeDataset(train_list, False, False)
# valid_data_loader = torch.utils.data.DataLoader(valid_dataset,
#                                                 batch_size=4,
#                                                 shuffle=False,
#                                                  num_workers=0)
# print('validation items:', len(valid_dataset))

net = SSD(3)
optimizer = optim.SGD(net.parameters(),
                      lr=learning_rate,
                      momentum=0.9,
                      weight_decay=1e-4)
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
criterion = MultiboxLoss([0.1, 0.1, 0.2, 0.2])

if use_gpu:
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    net.cuda()
    criterion.cuda()

train_losses = []
valid_losses = []
itr = 0
示例#4
0
path_to_trained_model = 'ssd_net.pth'

img_file_path = sys.argv[1] # the index should be 1, 0 is the 'eval.py'
img = Image.open(img_file_path)
img_norm = (img - IMG_MEAN) / IMG_STD
img_np = np.asarray([img_norm], dtype="float32")
img_tensor = torch.from_numpy(img_np)
prior_bboxes = generate_prior_bboxes(prior_layer_cfg = prior_layer_cfg)

if WILL_TEST:

    if USE_GPU:
        test_net_state = torch.load(path_to_trained_model)
    else:
        test_net_state = torch.load(path_to_trained_model, map_location='cpu')
    test_net = SSD(num_classes=3)
    test_net.load_state_dict(test_net_state)
    test_net.eval()

    test_image_permuted = img_tensor.permute(0, 3, 1, 2)
    test_image_permuted = Variable(test_image_permuted.float())

    test_conf_preds, test_loc_preds = test_net.forward(test_image_permuted)
    test_bbox_priors = prior_bboxes.unsqueeze(0)
    test_bbox_preds = loc2bbox(test_loc_preds.cpu(), test_bbox_priors.cpu(), center_var=0.1, size_var=0.2)
    sel_bbox_preds = nms_bbox(test_bbox_preds.squeeze().detach(), test_conf_preds.squeeze().detach().cpu(), overlap_threshold=0.5, prob_threshold=0.5)

    rects = []
    classes = []

    for key in sel_bbox_preds.keys():
示例#5
0
def test_net(test_dataset, class_labels, results_path):
    if torch.cuda.is_available():
        torch.set_default_tensor_type('torch.cuda.FloatTensor')

    # Load the save model and deploy
    test_net = SSD(len(class_labels))

    test_net_state = torch.load(os.path.join(results_path))
    test_net.load_state_dict(test_net_state)
    test_net.cuda()

    test_net.eval()

    # accuracy
    count_matched = 0
    count_gt = 0
    for test_item_idx in range(0, len(test_dataset)):
        # test_item_idx = random.choice(range(0, len(test_dataset)))
        test_image_tensor, test_label_tensor, test_bbox_tensor, prior_bbox = test_dataset[
            test_item_idx]

        # run Forward
        with torch.no_grad():
            pred_scores_tensor, pred_bbox_tensor = test_net.forward(
                test_image_tensor.unsqueeze(0).cuda())  # N C H W

        # scores -> Prob # because I deleted F.softmax~ at the ssd_net for net.eval
        pred_scores_tensor = F.softmax(pred_scores_tensor, dim=2)

        # bbox loc -> bbox (center)
        pred_bbox_tensor = loc2bbox(pred_bbox_tensor, prior_bbox.unsqueeze(0))

        # NMS : return tensor dictionary (bbo
        pred_picked = nms_bbox(
            pred_bbox_tensor[0],
            pred_scores_tensor[0])  # not tensor, corner form

        # Show the result
        test_image = test_image_tensor.cpu().numpy().astype(
            np.float32).transpose().copy()  # H, W, C
        test_image = ((test_image + 1) / 2)
        gt_label = test_label_tensor.cpu().numpy().astype(np.uint8).copy()
        gt_bbox_tensor = torch.cat([
            test_bbox_tensor[..., :2] - test_bbox_tensor[..., 2:] / 2,
            test_bbox_tensor[..., :2] + test_bbox_tensor[..., 2:] / 2
        ],
                                   dim=-1)
        gt_bbox = gt_bbox_tensor.detach().cpu().numpy().astype(
            np.float32).reshape((-1, 4)).copy() * 300
        gt_idx = gt_label > 0

        # Calculate accuracy
        pred_scores = pred_scores_tensor.detach().cpu().numpy().astype(
            np.float32).copy()
        pred_label = pred_scores[0].argmax(axis=1)

        n_matched = 0
        for gt, pr in zip(gt_label, pred_label):
            if gt > 0 and gt == pr:
                n_matched += 1
        acc_per_image = 100 * n_matched / gt_idx.sum()
        count_matched += n_matched
        count_gt += gt_idx.sum()

        # Show the results
        gt_bbox = gt_bbox[gt_idx]
        gt_label = gt_label[gt_idx]
        if False:
            for idx in range(gt_bbox.shape[0]):
                cv2.rectangle(test_image, (gt_bbox[idx][0], gt_bbox[idx][1]),
                              (gt_bbox[idx][2], gt_bbox[idx][3]), (255, 0, 0),
                              1)
                cv2.putText(test_image, str(gt_label[idx]),
                            (gt_bbox[idx][0], gt_bbox[idx][1]),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 0, 0), 1,
                            cv2.LINE_AA)

                #--------------------
                # cv2.rectangle(test_image, (pred_bbox[idx][0], pred_bbox[idx][1]), (pred_bbox[idx][2], pred_bbox[idx][3]),
                #               (0, 255, 0), 1)

                #-----------------------

            for cls_dict in pred_picked:
                for p_score, p_bbox in zip(cls_dict['picked_scores'],
                                           cls_dict['picked_bboxes']):
                    p_lbl = '%d | %.2f' % (cls_dict['class'], p_score)
                    p_bbox = p_bbox * 300
                    print(p_bbox, p_lbl)
                    cv2.rectangle(test_image, (p_bbox[0], p_bbox[1]),
                                  (p_bbox[2], p_bbox[3]), (0, 0, 255), 2)
                    cv2.putText(test_image, p_lbl, (p_bbox[0], p_bbox[1]),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1,
                                cv2.LINE_AA)
            plt.imshow(test_image)
            plt.suptitle(class_labels)
            plt.title('Temp Accuracy: {} %'.format(acc_per_image))
            plt.show()

    acc = 100 * count_matched / count_gt
    print('Classification acc: ', '%')
        with open("Output.txt", "w") as text_file:
            print(output_str, file=text_file)

        if (epoch_conf_loss + epoch_loc_loss) < min_total_loss:
            min_total_loss = epoch_conf_loss + epoch_loc_loss
            best_model_wts = copy.deepcopy(model.state_dict())
            torch.save(
                ssd_net,
                os.path.join(root_dir,
                             'ssd_net_1022_temporary_best_zoomout.pth'))
            print("saved for temporary best model: ", idx_epochs)

    print('Min Val Loss: {:4f}'.format(min_total_loss))

    model.load_state_dict(best_model_wts)
    with open("Output.txt", "w") as text_file:
        print(output_str, file=text_file)
    return model


num_classes = 3
root_dir = 'trained_model'
ssd_net = SSD(num_classes).cuda()
optimizer = optim.Adam(ssd_net.parameters())
criterion = MultiboxLoss()
ssd_net = train(ssd_net, optimizer, criterion, num_epochs=100)
torch.save(
    ssd_net,
    os.path.join(root_dir, 'ssd_net_1023_augmentation_100_zoomout_rgb.pth'))
示例#7
0
def main():
    torch.set_default_tensor_type('torch.cuda.FloatTensor')

    prior_layer_cfg = [{
        'layer_name': 'Conv5',
        'feature_dim_hw': (19, 19),
        'bbox_size': (60, 60),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv11',
        'feature_dim_hw': (10, 10),
        'bbox_size': (105, 105),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv14_2',
        'feature_dim_hw': (5, 5),
        'bbox_size': (150, 150),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv15_2',
        'feature_dim_hw': (3, 3),
        'bbox_size': (195, 195),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv16_2',
        'feature_dim_hw': (2, 2),
        'bbox_size': (240, 240),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }, {
        'layer_name': 'Conv17_2',
        'feature_dim_hw': (1, 1),
        'bbox_size': (285, 285),
        'aspect_ratio': (1.0, 1 / 2, 1 / 3, 2.0, 3.0, '1t')
    }]
    prior_bboxes = generate_prior_bboxes(prior_layer_cfg)

    # loading the test image
    img_file_path = sys.argv[1]
    # img_file_path = 'image.png'
    img = Image.open(img_file_path)
    img = img.resize((300, 300))
    plot_img = img.copy()
    img_array = np.asarray(img)[:, :, :3]
    mean = np.asarray((127, 127, 127))
    std = 128.0
    img_array = (img_array - mean) / std
    h, w, c = img_array.shape[0], img_array.shape[1], img_array.shape[2]
    img_tensor = torch.Tensor(img_array)
    test_input = img_tensor.view(1, c, h, w)

    # # loading test input to run test on
    # test_data_loader = torch.utils.data.DataLoader(test_input,
    #                                                 batch_size=1,
    #                                                 shuffle=True,
    #                                                 num_workers=0)
    # idx, (img) = next(enumerate(test_data_loader))
    # # Setting model to evaluate mode
    net = SSD(2)
    test_net_state = torch.load('ssd_net.pth')
    net.load_state_dict(test_net_state)
    # net.eval()
    net.cuda()
    # Forward
    test_input = Variable(test_input.cuda())
    test_cof, test_loc = net.forward(test_input)

    test_loc = test_loc.detach()
    test_loc_clone = test_loc.clone()

    # normalizing the loss to add up to 1 (for probability)
    test_cof_score = F.softmax(test_cof[0], dim=1)
    # print(test_cof_score.shape)
    # print(test_cof_score)

    # running NMS
    sel_idx = nms_bbox1(test_loc_clone[0],
                        prior_bboxes,
                        test_cof_score.detach(),
                        overlap_threshold=0.5,
                        prob_threshold=0.24)

    test_loc = loc2bbox(test_loc[0], prior_bboxes)
    test_loc = center2corner(test_loc)

    sel_bboxes = test_loc[sel_idx]

    # plotting the output
    plot_output(plot_img, sel_bboxes.cpu().detach().numpy())
示例#8
0
def train_net(train_loader,
              valid_loader,
              class_labels,
              lab_results_dir,
              learning_rate=0.0001,
              is_lr_scheduled=True,
              max_epoch=1,
              save_epochs=[10, 20, 30]):
    # Measure execution time
    train_start = time.time()
    start_time = strftime('SSD__%dth_%H:%M_', gmtime())

    # Define the Net
    print('num_class: ', len(class_labels))
    print('class_labels: ', class_labels)
    ssd_net = SSD(len(class_labels))
    # Set the parameter defined in the net to GPU
    net = ssd_net

    if torch.cuda.is_available():
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.backends.cudnn.benchmark = True
        net.cuda()

    # Define the loss
    center_var = 0.1
    size_var = 0.2
    criterion = MultiboxLoss([center_var, center_var, size_var, size_var],
                             iou_threshold=0.5,
                             neg_pos_ratio=3.0)

    # Define Optimizer
    optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
    # optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9,
    #                       weight_decay=0.0005)
    if is_lr_scheduled:
        scheduler = MultiStepLR(optimizer,
                                milestones=[10, 30, 50, 70],
                                gamma=0.1)

    # Train data
    conf_losses = []
    loc_losses = []
    v_conf_losses = []
    v_loc_losses = []
    itr = 0
    train_log = []
    valid_log = []
    for epoch_idx in range(0, max_epoch):

        # decrease learning rate
        if is_lr_scheduled:
            scheduler.step()
            print('\n\n===> lr: {}'.format(scheduler.get_lr()[0]))

        # Save the trained network
        if epoch_idx in save_epochs:
            temp_file = start_time + 'epoch_{}'.format(epoch_idx)
            net_state = net.state_dict()  # serialize the instance
            torch.save(net_state, lab_results_dir + temp_file + '__model.pth')
            print('================> Temp file is created: ',
                  lab_results_dir + temp_file + '__model.pth')

        # iterate the mini-batches:
        for train_batch_idx, data in enumerate(train_loader):
            train_images, train_labels, train_bboxes, prior_bbox = data

            # Switch to train model
            net.train()

            # Forward
            train_img = Variable(train_images.clone().cuda())
            train_bbox = Variable(train_bboxes.clone().cuda())
            train_label = Variable(train_labels.clone().cuda())

            train_out_confs, train_out_locs = net.forward(train_img)
            # locations(feature map base) -> bbox(center form)
            train_out_bbox = loc2bbox(train_out_locs,
                                      prior_bbox[0].unsqueeze(0))

            # update the parameter gradients as zero
            optimizer.zero_grad()

            # Compute the loss
            conf_loss, loc_loss = criterion.forward(train_out_confs,
                                                    train_out_bbox,
                                                    train_label, train_bbox)
            train_loss = conf_loss + loc_loss

            # Do the backward to compute the gradient flow
            train_loss.backward()

            # Update the parameters
            optimizer.step()

            conf_losses.append((itr, conf_loss))
            loc_losses.append((itr, loc_loss))

            itr += 1
            if train_batch_idx % 20 == 0:
                train_log_temp = '[Train]epoch: %d itr: %d Conf Loss: %.4f Loc Loss: %.4f' % (
                    epoch_idx, itr, conf_loss, loc_loss)
                train_log += (train_log_temp + '\n')
                print(train_log_temp)
                if False:  # check input tensor
                    image_s = train_images[0, :, :, :].cpu().numpy().astype(
                        np.float32).transpose().copy()  # c , h, w -> h, w, c
                    image_s = ((image_s + 1) / 2)
                    bbox_cr_s = torch.cat([
                        train_bboxes[..., :2] - train_bboxes[..., 2:] / 2,
                        train_bboxes[..., :2] + train_bboxes[..., 2:] / 2
                    ],
                                          dim=-1)
                    bbox_prior_s = bbox_cr_s[0, :].cpu().numpy().astype(
                        np.float32).reshape(
                            (-1, 4)).copy()  # First sample in batch
                    bbox_prior_s = (bbox_prior_s * 300)
                    label_prior_s = train_labels[0, :].cpu().numpy().astype(
                        np.float32).copy()
                    bbox_s = bbox_prior_s[label_prior_s > 0]
                    label_s = (label_prior_s[label_prior_s > 0]).astype(
                        np.uint8)

                    for idx in range(0, len(label_s)):
                        cv2.rectangle(image_s,
                                      (bbox_s[idx][0], bbox_s[idx][1]),
                                      (bbox_s[idx][2], bbox_s[idx][3]),
                                      (255, 0, 0), 2)
                        cv2.putText(image_s, class_labels[label_s[idx]],
                                    (bbox_s[idx][0], bbox_s[idx][1]),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 0, 0),
                                    1, cv2.LINE_AA)

                    plt.imshow(image_s)
                    plt.show()

            # validaton
            if train_batch_idx % 200 == 0:
                net.eval()  # Evaluation mode
                v_conf_subsum = torch.zeros(
                    1)  # collect the validation losses for avg.
                v_loc_subsum = torch.zeros(1)
                v_itr_max = 5
                for valid_itr, data in enumerate(valid_loader):
                    valid_image, valid_label, valid_bbox, prior_bbox = data

                    valid_image = Variable(valid_image.cuda())
                    valid_bbox = Variable(valid_bbox.cuda())
                    valid_label = Variable(valid_label.cuda())

                    # Forward and compute loss
                    with torch.no_grad(
                    ):  # make all grad flags to false!! ( Memory decrease)
                        valid_out_confs, valid_out_locs = net.forward(
                            valid_image)
                    valid_out_bbox = loc2bbox(
                        valid_out_locs,
                        prior_bbox[0].unsqueeze(0))  # loc -> bbox(center form)

                    valid_conf_loss, valid_loc_loss = criterion.forward(
                        valid_out_confs, valid_out_bbox, valid_label,
                        valid_bbox)

                    v_conf_subsum += valid_conf_loss
                    v_loc_subsum += valid_loc_loss
                    valid_itr += 1
                    if valid_itr > v_itr_max:
                        break

                # avg. valid loss
                v_conf_losses.append((itr, v_conf_subsum / v_itr_max))
                v_loc_losses.append((itr, v_loc_subsum / v_itr_max))

                valid_log_temp = '==>[Valid]epoch: %d itr: %d Conf Loss: %.4f Loc Loss: %.4f' % (
                    epoch_idx, itr, v_conf_subsum / v_itr_max,
                    v_loc_subsum / v_itr_max)
                valid_log += (valid_log_temp + '\n')
                print(valid_log_temp)

    # Measure the time
    train_end = time.time()
    m, s = divmod(train_end - train_start, 60)
    h, m = divmod(m, 60)

    # Save the result
    results_file_name = start_time + 'itr_{}'.format(itr)

    train_data = {
        'conf_losses': np.asarray(conf_losses),
        'loc_losses': np.asarray(loc_losses),
        'v_conf_losses': np.asarray(v_conf_losses),
        'v_loc_losses': np.asarray(v_loc_losses),
        'learning_rate': learning_rate,
        'total_itr': itr,
        'max_epoch': max_epoch,
        'train_time': '%d:%02d:%02d' % (h, m, s)
    }

    torch.save(train_data, lab_results_dir + results_file_name + '.loss')

    # Save the trained network
    net_state = net.state_dict()  # serialize the instance
    torch.save(net_state, lab_results_dir + results_file_name + '__model.pth')

    # Save the train/valid log
    torch.save({'log': train_log},
               lab_results_dir + results_file_name + '__train.log')
    torch.save({'log': valid_log},
               lab_results_dir + results_file_name + '__valid.log')

    return lab_results_dir + results_file_name
示例#9
0
        torch.set_default_tensor_type('torch.cuda.FloatTensor')

    # 1. Conver image to input image tensor -------------------------------------------
    img_file_path = sys.argv[1]
    #  # the index should be 1, 0 is the 'eval.py'
    image = Image.open(img_file_path).resize((300, 300))
    image = np.divide((np.asarray(image, dtype=np.float32) - 128.0),
                      np.asarray((127, 127, 127)))
    img_tensor = torch.from_numpy(image.transpose()).type(torch.float32)

    if torch.cuda.is_available():
        img_tensor = img_tensor.cuda()

    # 2. Load the saved model and test ------------------------------------------------
    class_labels = list(dataset_label_group.keys())
    test_net = SSD(len(class_labels))

    test_net_state = torch.load(os.path.join(results_path))
    test_net.load_state_dict(test_net_state)

    if torch.cuda.is_available():
        test_net.cuda()

    test_net.eval()

    # 3. Run Forward -------------------------------------------------------------------
    with torch.no_grad():
        pred_scores_tensor, pred_bbox_tensor = test_net.forward(
            img_tensor.unsqueeze(0))  # N C H W

    prior = CityScapeDataset([])
示例#10
0
test_set = CityScapeDataset(test_set_list)
test_data_loader = DataLoader(test_set,
                              batch_size=1,
                              shuffle=True,
                              num_workers=num_workers)
print('Total test set:', len(test_set))

if WILL_TRAIN:
    # Print key info of tensor inputs
    idx, (loc_targets, conf_targets,
          image) = next(enumerate(train_data_loader))
    print('loc_targets tensor shape:', loc_targets.shape)
    print('conf_targets tensor shape:', conf_targets.shape)
    print('image tensor shape:', image.shape)
    # Create the instance of our defined network
    net = SSD(num_classes=3)
    net.cuda()
    criterion = MultiboxLoss([0.1, 0.1, 0.2, 0.2],
                             iou_threshold=0.5,
                             neg_pos_ratio=3.0)
    # optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9, weight_decay=0.0005)
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
    train_losses = []
    valid_losses = []
    max_epochs = 50
    itr = 0

    # Train process
    for epoch_idx in range(0, max_epochs):
        for train_batch_idx, (train_loc_targets, train_conf_targets,
                              train_image) in enumerate(train_data_loader):