def main(): # Settings device = int(sys.argv[1]) if len(sys.argv) > 1 else None model = "mlp" batch_size = 128 n_l_train_data = 100 n_train_data = 60000 n_cls = 10 dims = 100 learning_rate = 1. * 1e-3 n_epoch = 50 act = F.relu iter_epoch = n_train_data / batch_size n_iter = n_epoch * iter_epoch # Separate dataset home = os.environ.get("HOME") fpath = os.path.join(home, "datasets/mnist/train.npz") separator = Separator(n_l_train_data) separator.separate_then_save(fpath) l_train_path = os.path.join(home, "datasets/mnist/l_train.npz") u_train_path = os.path.join(home, "datasets/mnist/train.npz") test_path = os.path.join(home, "datasets/mnist/test.npz") # DataReader, Model, Optimizer, Losses data_reader = MNISTDataReader(l_train_path, u_train_path, test_path, batch_size=batch_size, n_cls=n_cls, shape=True) exp = Experiment( device, n_cls, dims, learning_rate, act, ) # Training loop print("# Training loop") epoch = 1 st = time.time() for i in range(n_iter): # Get data #x_l, y_l = [Variable(to_device(x, device)) \ # for x in data_reader.get_l_train_batch()] x_l, y_l = [x for x in data_reader.get_l_train_batch()] x_l = Variable(to_device(x_l, device)) x_u, _ = [Variable(to_device(x, device)) \ for x in data_reader.get_u_train_batch()] # Train exp.train(x_l, y_l, x_u) # Eval if (i + 1) % iter_epoch == 0: # Get data x_l, y_l = [x for x in data_reader.get_test_batch()] x_l = Variable(to_device(x_l, device)) d_x_gen = exp.test(x_l, y_l) msg = "Epoch:{},ElapsedTime:{},Acc:{}".format( epoch, time.time() - st, d_x_gen) print(msg) exp.save_model(epoch) st = time.time() epoch += 1
def main(): # Settings device = int(sys.argv[1]) if len(sys.argv) > 1 else None model = "mlp" batch_size = 128 n_l_train_data = 100 n_train_data = 60000 n_cls = 10 dims = 100 learning_rate = 1. * 1e-3 n_epoch = 50 act = F.relu iter_epoch = n_train_data / batch_size n_iter = n_epoch * iter_epoch # Separate dataset home = os.environ.get("HOME") fpath = os.path.join(home, "datasets/mnist/train.npz") separator = Separator(n_l_train_data) separator.separate_then_save(fpath) l_train_path = os.path.join(home, "datasets/mnist/l_train.npz") u_train_path = os.path.join(home, "datasets/mnist/train.npz") test_path = os.path.join(home, "datasets/mnist/test.npz") # DataReader, Model, Optimizer, Losses data_reader = MNISTDataReader(l_train_path, u_train_path, test_path, batch_size=batch_size, n_cls=n_cls, shape=True) exp = Experiment( device, n_cls, dims, learning_rate, act, ) # Training loop print("# Training loop") epoch = 1 st = time.time() for i in range(n_iter): # Get data #x_l, y_l = [Variable(to_device(x, device)) \ # for x in data_reader.get_l_train_batch()] x_l, y_l = [x for x in data_reader.get_l_train_batch()] x_l = Variable(to_device(x_l, device)) x_u, _ = [Variable(to_device(x, device)) \ for x in data_reader.get_u_train_batch()] # Train exp.train(x_l, y_l, x_u) # Eval if (i+1) % iter_epoch == 0: # Get data x_l, y_l = [x for x in data_reader.get_test_batch()] x_l = Variable(to_device(x_l, device)) d_x_gen = exp.test(x_l, y_l) msg = "Epoch:{},ElapsedTime:{},Acc:{}".format( epoch, time.time() - st, d_x_gen) print(msg) exp.save_model(epoch) st = time.time() epoch +=1
def main(): # Settings device = int(sys.argv[1]) if len(sys.argv) > 1 else None model = "mlp" batch_size = 128 n_l_train_data = 100 n_train_data = 60000 n_cls = 10 dims = 100 learning_rate = 1. * 1e-3 learning_rate_gan = 1. * 1e-3 n_epoch = 100 act = F.relu iter_epoch = n_train_data / batch_size n_iter = n_epoch * iter_epoch # Separate dataset home = os.environ.get("HOME") fpath = os.path.join(home, "datasets/mnist/train.npz") separator = Separator(n_l_train_data) separator.separate_then_save(fpath) l_train_path = os.path.join(home, "datasets/mnist/l_train.npz") u_train_path = os.path.join(home, "datasets/mnist/train.npz") test_path = os.path.join(home, "datasets/mnist/test.npz") # DataReader, Model, Optimizer, Losses data_reader = MNISTDataReader(l_train_path, u_train_path, test_path, batch_size=batch_size, n_cls=n_cls, shape=True) exp = Experiment009( device, n_cls, dims, learning_rate, learning_rate_gan, act, ) # Training loop print("# Training loop") epoch = 1 st = time.time() for i in range(n_iter): # Get data #x_l, y_l = [Variable(to_device(x, device)) \ # for x in data_reader.get_l_train_batch()] x_l, y_l = [x for x in data_reader.get_l_train_batch()] x_l = Variable(to_device(x_l, device)) x_u, _ = [Variable(to_device(x, device)) \ for x in data_reader.get_u_train_batch()] # Train exp.train(x_l, y_l, x_u) # Eval if (i+1) % iter_epoch == 0: # Get data x_l, y_l = [x for x in data_reader.get_test_batch()] x_l = Variable(to_device(x_l, device)) loss = [] pred = [] bs = 100 for i in range(0, x_l.shape[0], bs): l, y = exp.test(x_l[i:i+bs, ], y_l[i:i+bs, ], epoch, i) loss.append(l) pred.append(y) msg = "Epoch:{},ElapsedTime:{},Loss:{}".format( epoch, time.time() - st, np.mean(loss)) print(msg) np.save("./pred_{:05d}".format(epoch), np.concatenate(pred)) exp.save_model(epoch) st = time.time() epoch +=1