def learn(self, total_timesteps, save_dir, render, load_path=None,callback=None, seed=None, log_interval=1, tb_log_name="PPO2",reset_num_timesteps=True): # Transform to callable if needed self.learning_rate = get_schedule_fn(self.learning_rate) self.cliprange = get_schedule_fn(self.cliprange) new_tb_log = self._init_num_timesteps(reset_num_timesteps) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn(seed) episode_stats = EpisodeStats(self.n_steps, self.n_envs) #if load_path is not None: # loaded_model = self.load(load_path) # runner = Runner(env=self.env, model=loaded_model, n_steps=self.n_steps, gamma=self.gamma, lam=self.lam) # print("loaded model {}".format(loaded_model)) #else: runner = Runner(env=self.env, model=self, n_steps=self.n_steps, gamma=self.gamma, lam=self.lam) self.episode_reward = np.zeros((self.n_envs,)) ep_info_buf = deque(maxlen=100) t_first_start = time.time() nupdates = total_timesteps // self.n_batch for update in range(1, nupdates + 1): assert self.n_batch % self.nminibatches == 0 batch_size = self.n_batch // self.nminibatches t_start = time.time() frac = 1.0 - (update - 1.0) / nupdates lr_now = self.learning_rate(frac) cliprangenow = self.cliprange(frac) # true_reward is the reward without discount obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = runner.run(render=render) episode_stats.feed(true_reward, masks) ep_info_buf.extend(ep_infos) mb_loss_vals = [] prev_num_timesteps = self.num_timesteps if states is None: # nonrecurrent version update_fac = self.n_batch // self.nminibatches // self.noptepochs + 1 inds = np.arange(self.n_batch) for epoch_num in range(self.noptepochs): np.random.shuffle(inds) for start in range(0, self.n_batch, batch_size): timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_batch + epoch_num * self.n_batch + start) // batch_size) end = start + batch_size mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_loss_vals.append(self._train_step(lr_now, cliprangenow, *slices, writer=writer, update=timestep)) self.num_timesteps += (self.n_batch * self.noptepochs) // batch_size * update_fac else: # recurrent version update_fac = self.n_batch // self.nminibatches // self.noptepochs // self.n_steps + 1 assert self.n_envs % self.nminibatches == 0 env_indices = np.arange(self.n_envs) flat_indices = np.arange(self.n_envs * self.n_steps).reshape(self.n_envs, self.n_steps) envs_per_batch = batch_size // self.n_steps for epoch_num in range(self.noptepochs): np.random.shuffle(env_indices) for start in range(0, self.n_envs, envs_per_batch): timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_envs + epoch_num * self.n_envs + start) // envs_per_batch) end = start + envs_per_batch mb_env_inds = env_indices[start:end] mb_flat_inds = flat_indices[mb_env_inds].ravel() slices = (arr[mb_flat_inds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mb_states = states[mb_env_inds] mb_loss_vals.append(self._train_step(lr_now, cliprangenow, *slices, update=timestep, writer=writer, states=mb_states)) self.num_timesteps += (self.n_envs * self.noptepochs) // envs_per_batch * update_fac loss_vals = np.mean(mb_loss_vals, axis=0) t_now = time.time() fps = int(self.n_batch / (t_now - t_start)) if writer is not None: self.episode_reward = total_episode_reward_logger(self.episode_reward, true_reward.reshape((self.n_envs, self.n_steps)), masks.reshape((self.n_envs, self.n_steps)), writer, self.num_timesteps) if self.verbose >= 1 and (update % log_interval == 0 or update == 1): explained_var = explained_variance(values, returns) logger.logkv("serial_timesteps", update * self.n_steps) logger.logkv("nupdates", update) logger.logkv("total_timesteps", self.num_timesteps) logger.logkv("fps", fps) logger.logkv("explained_variance", float(explained_var)) logger.logkv("mean_episode_length", episode_stats.mean_length()) logger.logkv("mean_episode_reward", episode_stats.mean_reward()) logger.logkv('time_elapsed', t_start - t_first_start) for (loss_val, loss_name) in zip(loss_vals, self.loss_names): logger.logkv(loss_name, loss_val) logger.dumpkvs() # save checkpoint # check if save_dir exists, otherwise make new directory if not os.path.exists(save_dir): os.makedirs(save_dir) model_path = save_dir + str(self.num_timesteps) + "model.ckpt" self.save(model_path) print("Checkpoint {} saved".format(model_path)) # Also save explained variance to a txt file fname = save_dir + "explained-var.txt" fid = open(fname, "a+") fid.write(str(explained_var) + "\n") fid.close() # look for previously saved checkpoint, and delete it #prev_checkpoint_num = prev_num_timesteps #prev_checkpoint_file = save_dir + str(prev_checkpoint_num) + "model.ckpt" #if os.path.exists(prev_checkpoint_file): # os.remove(prev_checkpoint_file) # print("Prev checkpoint file {} removed".format(prev_checkpoint_file)) if callback is not None: # Only stop training if return value is False, not when it is None. This is for backwards # compatibility with callbacks that have no return statement. if callback(locals(), globals()) is False: break return self
def learn(self, total_timesteps, callback=None, seed=None, log_interval=100, tb_log_name="ACER"): with SetVerbosity(self.verbose), TensorboardWriter( self.graph, self.tensorboard_log, tb_log_name) as writer: self._setup_learn(seed) self.learning_rate_schedule = Scheduler( initial_value=self.learning_rate, n_values=total_timesteps, schedule=self.lr_schedule) episode_stats = EpisodeStats(self.n_steps, self.n_envs) runner = _Runner(env=self.env, model=self, n_steps=self.n_steps) self.episode_reward = np.zeros((self.n_envs, )) if self.replay_ratio > 0: buffer = Buffer(env=self.env, n_steps=self.n_steps, size=self.buffer_size) else: buffer = None t_start = time.time() # n_batch samples, 1 on_policy call and multiple off-policy calls for steps in range(0, total_timesteps, self.n_batch): enc_obs, obs, actions, rewards, mus, dones, masks = runner.run( ) episode_stats.feed(rewards, dones) if buffer is not None: buffer.put(enc_obs, actions, rewards, mus, dones, masks) if writer is not None: self.episode_reward = total_episode_reward_logger( self.episode_reward, rewards.reshape((self.n_envs, self.n_steps)), dones.reshape((self.n_envs, self.n_steps)), writer, steps) # reshape stuff correctly obs = obs.reshape(runner.batch_ob_shape) actions = actions.reshape([runner.n_batch]) rewards = rewards.reshape([runner.n_batch]) mus = mus.reshape([runner.n_batch, runner.n_act]) dones = dones.reshape([runner.n_batch]) masks = masks.reshape([runner.batch_ob_shape[0]]) names_ops, values_ops = self._train_step( obs, actions, rewards, dones, mus, self.initial_state, masks, steps, writer) if callback is not None: # Only stop training if return value is False, not when it is None. This is for backwards # compatibility with callbacks that have no return statement. if callback(locals(), globals()) == False: break if self.verbose >= 1 and (int(steps / runner.n_batch) % log_interval == 0): logger.record_tabular("total_timesteps", steps) logger.record_tabular("fps", int(steps / (time.time() - t_start))) # IMP: In EpisodicLife env, during training, we get done=True at each loss of life, # not just at the terminal state. Thus, this is mean until end of life, not end of episode. # For true episode rewards, see the monitor files in the log folder. logger.record_tabular("mean_episode_length", episode_stats.mean_length()) logger.record_tabular("mean_episode_reward", episode_stats.mean_reward()) for name, val in zip(names_ops, values_ops): logger.record_tabular(name, float(val)) logger.dump_tabular() if self.replay_ratio > 0 and buffer.has_atleast( self.replay_start): samples_number = np.random.poisson(self.replay_ratio) for _ in range(samples_number): # get obs, actions, rewards, mus, dones from buffer. obs, actions, rewards, mus, dones, masks = buffer.get() # reshape stuff correctly obs = obs.reshape(runner.batch_ob_shape) actions = actions.reshape([runner.n_batch]) rewards = rewards.reshape([runner.n_batch]) mus = mus.reshape([runner.n_batch, runner.n_act]) dones = dones.reshape([runner.n_batch]) masks = masks.reshape([runner.batch_ob_shape[0]]) self._train_step(obs, actions, rewards, dones, mus, self.initial_state, masks, steps) return self
def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="ACER", reset_num_timesteps=True): new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() self.learning_rate_schedule = Scheduler( initial_value=self.learning_rate, n_values=total_timesteps, schedule=self.lr_schedule) episode_stats = EpisodeStats(self.n_steps, self.n_envs) if self.replay_ratio > 0: buffer = Buffer(env=self.env, n_steps=self.n_steps, size=self.buffer_size) else: buffer = None t_start = time.time() callback.on_training_start(locals(), globals()) # n_batch samples, 1 on_policy call and multiple off-policy calls for steps in range(0, total_timesteps, self.n_batch): callback.on_rollout_start() enc_obs, obs, actions, rewards, mus, dones, masks = self.runner.run( callback) callback.on_rollout_end() # Early stopping due to the callback if not self.runner.continue_training: break episode_stats.feed(rewards, dones) if buffer is not None: buffer.put(enc_obs, actions, rewards, mus, dones, masks) if writer is not None: total_episode_reward_logger( self.episode_reward, rewards.reshape((self.n_envs, self.n_steps)), dones.reshape((self.n_envs, self.n_steps)), writer, self.num_timesteps) # reshape stuff correctly obs = obs.reshape(self.runner.batch_ob_shape) actions = actions.reshape([self.n_batch]) rewards = rewards.reshape([self.n_batch]) mus = mus.reshape([self.n_batch, self.n_act]) dones = dones.reshape([self.n_batch]) masks = masks.reshape([self.runner.batch_ob_shape[0]]) names_ops, values_ops = self._train_step( obs, actions, rewards, dones, mus, self.initial_state, masks, self.num_timesteps, writer) if self.verbose >= 1 and (int(steps / self.n_batch) % log_interval == 0): logger.record_tabular("total_timesteps", self.num_timesteps) logger.record_tabular("fps", int(steps / (time.time() - t_start))) # IMP: In EpisodicLife env, during training, we get done=True at each loss of life, # not just at the terminal state. Thus, this is mean until end of life, not end of episode. # For true episode rewards, see the monitor files in the log folder. logger.record_tabular("mean_episode_length", episode_stats.mean_length()) logger.record_tabular("mean_episode_reward", episode_stats.mean_reward()) for name, val in zip(names_ops, values_ops): logger.record_tabular(name, float(val)) logger.dump_tabular() if (self.replay_ratio > 0 and buffer is not None and buffer.has_atleast(self.replay_start)): samples_number = np.random.poisson(self.replay_ratio) for _ in range(samples_number): # get obs, actions, rewards, mus, dones from buffer. obs, actions, rewards, mus, dones, masks = buffer.get() # reshape stuff correctly obs = obs.reshape(self.runner.batch_ob_shape) actions = actions.reshape([self.n_batch]) rewards = rewards.reshape([self.n_batch]) mus = mus.reshape([self.n_batch, self.n_act]) dones = dones.reshape([self.n_batch]) masks = masks.reshape([self.runner.batch_ob_shape[0]]) self._train_step(obs, actions, rewards, dones, mus, self.initial_state, masks, self.num_timesteps) callback.on_training_end() return self