def test_tree_set(): """ test Segment Tree data structure """ tree = SumSegmentTree(4) tree[np.array([2, 3])] = [1.0, 3.0] assert np.isclose(tree.sum(), 4.0) assert np.isclose(tree.sum(0, 2), 0.0) assert np.isclose(tree.sum(0, 3), 1.0) assert np.isclose(tree.sum(2, 3), 1.0) assert np.isclose(tree.sum(2, -1), 1.0) assert np.isclose(tree.sum(2, 4), 4.0) tree = SumSegmentTree(4) tree[2] = 1.0 tree[3] = 3.0 assert np.isclose(tree.sum(), 4.0) assert np.isclose(tree.sum(0, 2), 0.0) assert np.isclose(tree.sum(0, 3), 1.0) assert np.isclose(tree.sum(2, 3), 1.0) assert np.isclose(tree.sum(2, -1), 1.0) assert np.isclose(tree.sum(2, 4), 4.0)
def test_tree_set_overlap(): """ test Segment Tree data structure """ tree = SumSegmentTree(4) tree[2] = 1.0 tree[2] = 3.0 assert np.isclose(tree.sum(), 3.0) assert np.isclose(tree.sum(2, 3), 3.0) assert np.isclose(tree.sum(2, -1), 3.0) assert np.isclose(tree.sum(2, 4), 3.0) assert np.isclose(tree.sum(1, 2), 0.0)
class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha): """ Create Prioritized Replay buffer. See Also ReplayBuffer.__init__ :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization) """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha >= 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def add(self, obs_t, action, reward, obs_tp1, done): """ add a new transition to the buffer :param obs_t: (Any) the last observation :param action: ([float]) the action :param reward: (float) the reward of the transition :param obs_tp1: (Any) the current observation :param done: (bool) is the episode done """ idx = self._next_idx super().add(obs_t, action, reward, obs_tp1, done) self._it_sum[idx] = self._max_priority**self._alpha self._it_min[idx] = self._max_priority**self._alpha def _sample_proportional(self, batch_size): res = [] for _ in range(batch_size): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage) - 1) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res def sample(self, batch_size, beta=0): """ Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. :param batch_size: (int) How many transitions to sample. :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction) :return: - obs_batch: (np.ndarray) batch of observations - act_batch: (numpy float) batch of actions executed given obs_batch - rew_batch: (numpy float) rewards received as results of executing act_batch - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """ Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. :param idxes: ([int]) List of idxes of sampled transitions :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority)
class EpisodicMemory(object): def __init__(self, buffer_size, state_dim, action_shape, obs_space, q_func, repr_func, obs_ph, action_ph, sess, gamma=0.99, alpha=0.6, max_step=1000): buffer_size = int(buffer_size) self.state_dim = state_dim self.capacity = buffer_size self.curr_capacity = 0 self.pointer = 0 self.obs_space = obs_space self.action_shape = action_shape self.max_step = max_step self.query_buffer = np.zeros((buffer_size, state_dim)) self._q_values = -np.inf * np.ones(buffer_size + 1) self.returns = -np.inf * np.ones(buffer_size + 1) self.replay_buffer = np.empty((buffer_size, ) + obs_space.shape, np.float32) self.action_buffer = np.empty((buffer_size, ) + action_shape, np.float32) self.reward_buffer = np.empty((buffer_size, ), np.float32) self.steps = np.empty((buffer_size, ), np.int) self.done_buffer = np.empty((buffer_size, ), np.bool) self.truly_done_buffer = np.empty((buffer_size, ), np.bool) self.next_id = -1 * np.ones(buffer_size) self.prev_id = [[] for _ in range(buffer_size)] self.ddpg_q_values = -np.inf * np.ones(buffer_size) self.contra_count = np.ones((buffer_size, )) self.lru = np.zeros(buffer_size) self.time = 0 self.gamma = gamma # self.hashes = dict() self.reward_mean = None self.min_return = 0 self.end_points = [] assert alpha > 0 self._alpha = alpha self.beta_set = [-1] self.beta_coef = [1.] it_capacity = 1 while it_capacity < buffer_size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self.q_func = q_func self.repr_func = repr_func self.obs_ph = obs_ph self.action_ph = action_ph self.sess = sess def clean(self): buffer_size, state_dim, obs_space, action_shape = self.capacity, self.state_dim, self.obs_space, self.action_shape self.curr_capacity = 0 self.pointer = 0 self.query_buffer = np.zeros((buffer_size, state_dim)) self._q_values = -np.inf * np.ones(buffer_size + 1) self.returns = -np.inf * np.ones(buffer_size + 1) self.replay_buffer = np.empty((buffer_size, ) + obs_space.shape, np.float32) self.action_buffer = np.empty((buffer_size, ) + action_shape, np.float32) self.reward_buffer = np.empty((buffer_size, ), np.float32) self.steps = np.empty((buffer_size, ), np.int) self.done_buffer = np.empty((buffer_size, ), np.bool) self.truly_done_buffer = np.empty((buffer_size, ), np.bool) self.next_id = -1 * np.ones(buffer_size) self.prev_id = [[] for _ in range(buffer_size)] self.ddpg_q_values = -np.inf * np.ones(buffer_size) self.contra_count = np.ones((buffer_size, )) self.lru = np.zeros(buffer_size) self.time = 0 it_capacity = 1 while it_capacity < buffer_size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self.end_points = [] @property def q_values(self): return self._q_values def squeeze(self, obses): return np.array([(obs - self.obs_space.low) / (self.obs_space.high - self.obs_space.low) for obs in obses]) def unsqueeze(self, obses): return np.array([ obs * (self.obs_space.high - self.obs_space.low) + self.obs_space.low for obs in obses ]) def save(self, filedir): save_dict = { "query_buffer": self.query_buffer, "returns": self.returns, "replay_buffer": self.replay_buffer, "reward_buffer": self.reward_buffer, "truly_done_buffer": self.truly_done_buffer, "next_id": self.next_id, "prev_id": self.prev_id, "gamma": self.gamma, "_q_values": self._q_values, "done_buffer": self.done_buffer, "curr_capacity": self.curr_capacity, "capacity": self.capacity } with open(os.path.join(filedir, "episodic_memory.pkl"), "wb") as memory_file: pkl.dump(save_dict, memory_file) def add(self, obs, action, state, sampled_return, next_id=-1): index = self.pointer self.pointer = (self.pointer + 1) % self.capacity if self.curr_capacity >= self.capacity: # Clean up old entry if index in self.end_points: self.end_points.remove(index) self.prev_id[index] = [] self.next_id[index] = -1 self.q_values[index] = -np.inf else: self.curr_capacity = min(self.capacity, self.curr_capacity + 1) # Store new entry self.replay_buffer[index] = obs self.action_buffer[index] = action if state is not None: self.query_buffer[index] = state self.q_values[index] = sampled_return self.returns[index] = sampled_return self.lru[index] = self.time self._it_sum[index] = self._max_priority**self._alpha self._it_min[index] = self._max_priority**self._alpha if next_id >= 0: self.next_id[index] = next_id if index not in self.prev_id[next_id]: self.prev_id[next_id].append(index) self.time += 0.01 return index def update_priority(self, idxes, priorities): # priorities = 1 / np.sqrt(self.contra_count[:self.curr_capacity]) # priorities = priorities / np.max(priorities) assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): priority = max(priority, 1e-6) # assert priority > 0 assert 0 <= idx < self.capacity self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) def sample_neg_keys(self, avoids, batch_size): # sample negative keys assert batch_size + len( avoids ) <= self.capacity, "can't sample that much neg samples from episodic memory!" places = [] while len(places) < batch_size: ind = np.random.randint(0, self.curr_capacity) if ind not in places: places.append(ind) return places def compute_approximate_return(self, obses, actions=None): return np.min(np.array( self.sess.run(self.q_func, feed_dict={self.obs_ph: obses})), axis=0) def compute_statistics(self, batch_size=1024): estimated_qs = [] for i in range(math.ceil(self.curr_capacity / batch_size)): start = i * batch_size end = min((i + 1) * batch_size, self.curr_capacity) obses = self.replay_buffer[start:end] actions = None estimated_qs.append( self.compute_approximate_return(obses, actions).reshape(-1)) estimated_qs = np.concatenate(estimated_qs) diff = estimated_qs - self.q_values[:self.curr_capacity] return np.min(diff), np.mean(diff), np.max(diff) def retrieve_trajectories(self): trajs = [] for e in self.end_points: traj = [] prev = e while prev is not None: traj.append(prev) try: prev = self.prev_id[prev][0] # print(e,prev) except IndexError: prev = None # print(np.array(traj)) trajs.append(np.array(traj)) return trajs def update_memory(self, q_base=0, use_knn=False, beta=-1): trajs = self.retrieve_trajectories() for traj in trajs: # print(np.array(traj)) approximate_qs = self.compute_approximate_return( self.replay_buffer[traj], self.action_buffer[traj]) approximate_qs = approximate_qs.reshape(-1) approximate_qs = np.insert(approximate_qs, 0, 0) self.q_values[traj] = 0 Rtn = -1e10 if beta < 0 else 0 for i, s in enumerate(traj): approximate_q = self.reward_buffer[s] + \ self.gamma * (1 - self.truly_done_buffer[s]) * (approximate_qs[i] - q_base) Rtn = self.reward_buffer[s] + self.gamma * ( 1 - self.truly_done_buffer[s]) * Rtn if beta < 0: Rtn = max(Rtn, approximate_q) else: Rtn = beta * Rtn + (1 - beta) * approximate_q self.q_values[s] = Rtn def update_sequence_with_qs(self, sequence): # print(sequence) next_id = -1 Rtd = 0 for obs, a, z, q_t, r, truly_done, done in reversed(sequence): # print(np.mean(z)) if truly_done: Rtd = r else: Rtd = self.gamma * Rtd + r current_id = self.add(obs, a, z, Rtd, next_id) if done: self.end_points.append(current_id) self.replay_buffer[current_id] = obs self.reward_buffer[current_id] = r self.truly_done_buffer[current_id] = truly_done self.done_buffer[current_id] = done next_id = int(current_id) # self.update_priority() return def sample_negative(self, batch_size, batch_idxs, batch_idxs_next, batch_idx_pre): neg_batch_idxs = [] i = 0 while i < batch_size: neg_idx = np.random.randint(0, self.curr_capacity - 2) if neg_idx != batch_idxs[i] and neg_idx != batch_idxs_next[ i] and neg_idx not in batch_idx_pre[i]: neg_batch_idxs.append(neg_idx) i += 1 neg_batch_idxs = np.array(neg_batch_idxs) return neg_batch_idxs, self.replay_buffer[neg_batch_idxs] @staticmethod def switch_first_half(obs0, obs1, batch_size): tmp = copy.copy(obs0[:batch_size // 2, ...]) obs0[:batch_size // 2, ...] = obs1[:batch_size // 2, ...] obs1[:batch_size // 2, ...] = tmp return obs0, obs1 def sample(self, batch_size, mix=False, priority=False): # Draw such that we always have a proceeding element if self.curr_capacity < batch_size + len(self.end_points): return None # if priority: # self.update_priority() batch_idxs = [] batch_idxs_next = [] count = 0 while len(batch_idxs) < batch_size: if priority: mass = random.random() * self._it_sum.sum( 0, self.curr_capacity) rnd_idx = self._it_sum.find_prefixsum_idx(mass) else: rnd_idx = np.random.randint(0, self.curr_capacity) count += 1 assert count < 1e8 if self.next_id[rnd_idx] == -1: continue # be careful !!!!!! I use random id because in our implementation obs1 is never used # if len(self.prev_id[rnd_idx]) > 0: # batch_idxs_next.append(self.prev_id[rnd_idx][0]) # else: # batch_idxs_next.append(0) else: batch_idxs_next.append(self.next_id[rnd_idx]) batch_idxs.append(rnd_idx) batch_idxs = np.array(batch_idxs).astype(np.int) batch_idxs_next = np.array(batch_idxs_next).astype(np.int) # batch_idx_pre = [self.prev_id[id] for id in batch_idxs] obs0_batch = self.replay_buffer[batch_idxs] obs1_batch = self.replay_buffer[batch_idxs_next] # batch_idxs_neg, obs2_batch = self.sample_negative(batch_size, batch_idxs, batch_idxs_next, batch_idx_pre) action_batch = self.action_buffer[batch_idxs] action1_batch = self.action_buffer[batch_idxs_next] # action2_batch = self.action_buffer[batch_idxs_neg] reward_batch = self.reward_buffer[batch_idxs] terminal1_batch = self.done_buffer[batch_idxs] q_batch = self.q_values[batch_idxs] return_batch = self.returns[batch_idxs] if mix: obs0_batch, obs1_batch = self.switch_first_half( obs0_batch, obs1_batch, batch_size) if priority: self.contra_count[batch_idxs] += 1 self.contra_count[batch_idxs_next] += 1 result = { 'index0': array_min2d(batch_idxs), 'index1': array_min2d(batch_idxs_next), # 'index2': array_min2d(batch_idxs_neg), 'obs0': array_min2d(obs0_batch), 'obs1': array_min2d(obs1_batch), # 'obs2': array_min2d(obs2_batch), 'rewards': array_min2d(reward_batch), 'actions': array_min2d(action_batch), 'actions1': array_min2d(action1_batch), # 'actions2': array_min2d(action2_batch), 'count': array_min2d(self.contra_count[batch_idxs] + self.contra_count[batch_idxs_next]), 'terminals1': array_min2d(terminal1_batch), 'return': array_min2d(q_batch), 'true_return': array_min2d(return_batch), } return result def plot(self): X = self.replay_buffer[:self.curr_capacity] model = TSNE() low_dim_data = model.fit_transform(X) plt.scatter(low_dim_data[:, 0], low_dim_data[:, 1]) plt.show()
class TwoWayPrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha): super(PrioritizedReplayBuffer, self).__init__(size) assert alpha >= 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def add(self, obs_t, action, reward, obs_tp1, done): idx = self._next_idx super().add(obs_t, action, reward, obs_tp1, done) self._it_sum[idx] = self._max_priority**self._alpha self._it_min[idx] = self._max_priority**self._alpha def extend(self, obs_t, action, reward, obs_tp1, done): idx = self._next_idx super().extend(obs_t, action, reward, obs_tp1, done) while idx != self._next_idx: self._it_sum[idx] = self._max_priority**self._alpha self._it_min[idx] = self._max_priority**self._alpha idx = (idx + 1) % self._maxsize def _sample_proportional(self, batch_size): mass = [] total = self._it_sum.sum(0, len(self._storage) - 1) # TODO(szymon): should we ensure no repeats? mass = np.random.random(size=batch_size) * total idx = self._it_sum.find_prefixsum_idx(mass) return idx def sample(self, batch_size: int, beta: float = 0, env: Optional[VecNormalize] = None): assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) p_sample = self._it_sum[idxes] / self._it_sum.sum() weights = (p_sample * len(self._storage))**(-beta) / max_weight encoded_sample = self._encode_sample(idxes, env=env) return tuple(list(encoded_sample) + [weights, idxes]) def _sample_invproportional(self, batch_size): mass = [] total = self._it_sum.sum(len(self._storage) - 1, 0) # TODO(szymon): should we ensure no repeats? mass = np.random.random(size=batch_size) * total idx = self._it_sum.find_prefixsum_idx(mass) return idx def invsample(self, batch_size: int, beta: float = 0, env: Optional[VecNormalize] = None): assert beta > 0 idxes = self._sample_invproportional(batch_size) encoded_sample = self._encode_sample(idxes, env=env) return list(encoded_sample) def update_priorities(self, idxes, priorities): assert len(idxes) == len(priorities) assert np.min(priorities) > 0 assert np.min(idxes) >= 0 assert np.max(idxes) < len(self.storage) self._it_sum[idxes] = priorities**self._alpha self._it_min[idxes] = priorities**self._alpha self._max_priority = max(self._max_priority, np.max(priorities))
class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha): """ Create Prioritized Replay buffer. See Also ReplayBuffer.__init__ :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization) """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha >= 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def add(self, obs_t, action, reward, obs_tp1, done): """ add a new transition to the buffer :param obs_t: (Any) the last observation :param action: ([float]) the action :param reward: (float) the reward of the transition :param obs_tp1: (Any) the current observation :param done: (bool) is the episode done """ idx = self._next_idx super().add(obs_t, action, reward, obs_tp1, done) self._it_sum[idx] = self._max_priority**self._alpha self._it_min[idx] = self._max_priority**self._alpha def extend(self, obs_t, action, reward, obs_tp1, done): """ add a new batch of transitions to the buffer :param obs_t: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the last batch of observations :param action: (Union[Tuple[Union[np.ndarray, int]]], np.ndarray]) the batch of actions :param reward: (Union[Tuple[float], np.ndarray]) the batch of the rewards of the transition :param obs_tp1: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the current batch of observations :param done: (Union[Tuple[bool], np.ndarray]) terminal status of the batch Note: uses the same names as .add to keep compatibility with named argument passing but expects iterables and arrays with more than 1 dimensions """ idx = self._next_idx super().extend(obs_t, action, reward, obs_tp1, done) while idx != self._next_idx: self._it_sum[idx] = self._max_priority**self._alpha self._it_min[idx] = self._max_priority**self._alpha idx = (idx + 1) % self._maxsize def _sample_proportional(self, batch_size): mass = [] total = self._it_sum.sum(0, len(self._storage) - 1) # TODO(szymon): should we ensure no repeats? mass = np.random.random(size=batch_size) * total idx = self._it_sum.find_prefixsum_idx(mass) return idx def sample(self, batch_size: int, beta: float = 0, env: Optional[VecNormalize] = None): """ Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. :param batch_size: (int) How many transitions to sample. :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction) :param env: (Optional[VecNormalize]) associated gym VecEnv to normalize the observations/rewards when sampling :return: - obs_batch: (np.ndarray) batch of observations - act_batch: (numpy float) batch of actions executed given obs_batch - rew_batch: (numpy float) rewards received as results of executing act_batch - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) p_sample = self._it_sum[idxes] / self._it_sum.sum() weights = (p_sample * len(self._storage))**(-beta) / max_weight encoded_sample = self._encode_sample(idxes, env=env) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """ Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. :param idxes: ([int]) List of idxes of sampled transitions :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) assert np.min(priorities) > 0 assert np.min(idxes) >= 0 assert np.max(idxes) < len(self.storage) self._it_sum[idxes] = priorities**self._alpha self._it_min[idxes] = priorities**self._alpha self._max_priority = max(self._max_priority, np.max(priorities))
class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def add(self, *args, **kwargs): """See ReplayBuffer.store_effect""" idx = self._next_idx super().add(*args, **kwargs) self._it_sum[idx] = self._max_priority**self._alpha self._it_min[idx] = self._max_priority**self._alpha def _sample_proportional(self, batch_size): res = [] for _ in range(batch_size): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage) - 1) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch R_batch: np.array returns received as results of executing act_batch weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ idxes = self._sample_proportional(batch_size) if beta > 0: weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) weights.append(weight / max_weight) weights = np.array(weights) else: weights = np.ones_like(idxes, dtype=np.float32) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): priority = max(priority, 1e-6) assert priority > 0 assert 0 <= idx < len(self._storage) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority)
class PrioritizedMemory(Memory): def __init__(self, capacity, alpha, transition_small_epsilon=1e-6, demo_epsilon=0.2): super(PrioritizedMemory, self).__init__(capacity) assert alpha > 0 self._alpha = alpha self._transition_small_epsilon = transition_small_epsilon self._demo_epsilon = demo_epsilon it_capacity = 1 while it_capacity < self.capacity: it_capacity *= 2 # Size must be power of 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 100.0 self.help = [] def append(self, obs0, obs1, f_s0, f_s1, action, reward, terminal1): idx = self._next_idx if not super(PrioritizedMemory, self).append_(obs0=obs0, obs1=obs1, f_s0=f_s0, f_s1=f_s1, actions=action, rewards=reward, terminal1=terminal1): return # 新加入的'transition'设置为最大优先级, 确保每一个'transition'都至少被采样一次 self._it_sum[idx] = self._max_priority self._it_min[idx] = self._max_priority def append_demo(self, obs0, obs1, f_s0, f_s1, action, reward, terminal1): idx = self._next_idx if not super(PrioritizedMemory, self).append_(obs0=obs0, obs1=obs1, f_s0=f_s0, f_s1=f_s1, actions=action, rewards=reward, terminal1=terminal1, count=False): return self._it_sum[idx] = self._max_priority self._it_min[idx] = self._max_priority self.num_demonstrations += 1 def _sample_proportional(self, batch_size, pretrain): res = [] if pretrain: res = np.random.random_integers(low=0, high=self.nb_entries - 1, size=batch_size) return res for _ in range(batch_size): while True: mass = np.random.uniform( 0, self._it_sum.sum(0, len(self.storage) - 1)) idx = self._it_sum.find_prefixsum_idx(mass) if idx not in res: res.append(idx) break return res def sample(self, batch_size, beta, pretrain=False): idxes = self._sample_proportional(batch_size, pretrain) # demos is a bool demos = [i < self.num_demonstrations for i in idxes] weights = [] p_sum = self._it_sum.sum() # 算重要性采样权重 weights for idx in idxes: p_sample = self._it_sum[idx] / p_sum weight = ((1.0 / p_sample) * (1.0 / len(self.storage)))**beta weights.append(weight) weights = np.array(weights) / np.max(weights) encoded_sample = self._get_batches_for_idxes(idxes) encoded_sample['weights'] = array_min2d(weights) encoded_sample['idxes'] = array_min2d(idxes) encoded_sample['demos'] = array_min2d(demos) return encoded_sample def sample_rollout(self, batch_size, nsteps, beta, gamma, pretrain=False): batches = self.sample(batch_size, beta, pretrain) n_step_batches = { storable_element: [] for storable_element in self.storable_elements } n_step_batches["step_reached"] = [] idxes = batches["idxes"] for idx in idxes: local_idxes = list( range(int(idx), int(min(idx + nsteps, len(self))))) transitions = self._get_batches_for_idxes(local_idxes) summed_reward = 0 count = 0 terminal = 0.0 terminals = transitions['terminals1'] r = transitions['rewards'] for i in range(len(r)): summed_reward += (gamma**i) * r[i][0] count = i if terminals[i]: terminal = 1.0 break n_step_batches["step_reached"].append(count) n_step_batches["obs1"].append(transitions["obs1"][count]) n_step_batches["f_s1"].append(transitions["f_s1"][count]) n_step_batches["terminals1"].append(terminal) n_step_batches["rewards"].append(summed_reward) n_step_batches["actions"].append(transitions["actions"][0]) n_step_batches['demos'] = batches['demos'] n_step_batches['weights'] = batches['weights'] n_step_batches['idxes'] = idxes n_step_batches = {k: array_min2d(v) for k, v in n_step_batches.items()} return batches, n_step_batches, sum(batches['demos']) / batch_size def update_priorities(self, idxes, td_errors, actor_losses=0.0): priorities = td_errors + \ (actor_losses ** 2) + self._transition_small_epsilon for i in range(len(priorities)): if idxes[i] < self.num_demonstrations: priorities[i] += np.max(priorities) * self._demo_epsilon assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self.storage) idx = int(idx) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority**self._alpha) self.help.append(priority**self._alpha)