def do_ppo(args, start_theta, parent_this_run_dir, full_space_save_dir):

    """
    Runs the test
    """

    logger.log(f"#######CMA and then PPO TRAIN: {args}")

    this_conti_ppo_run_dir = get_ppo_part(parent_this_run_dir)
    log_dir = get_log_dir(this_conti_ppo_run_dir)
    conti_ppo_save_dir = get_save_dir(this_conti_ppo_run_dir)
    logger.configure(log_dir)

    full_param_traj_dir_path = get_full_params_dir(this_conti_ppo_run_dir)

    if os.path.exists(full_param_traj_dir_path):
        import shutil
        shutil.rmtree(full_param_traj_dir_path)
    os.makedirs(full_param_traj_dir_path)

    if os.path.exists(conti_ppo_save_dir):
        import shutil
        shutil.rmtree(conti_ppo_save_dir)
    os.makedirs(conti_ppo_save_dir)



    def make_env():
        env_out = gym.make(args.env)
        env_out.env.disableViewer = True
        env_out.env.visualize = False
        env_out = bench.Monitor(env_out, logger.get_dir(), allow_early_resets=True)
        return env_out
    env = DummyVecEnv([make_env])
    if args.normalize:
        env = VecNormalize(env)

    model = PPO2.load(f"{full_space_save_dir}/ppo2")
    model.set_from_flat(start_theta)

    if args.normalize:
        env.load_running_average(full_space_save_dir)
    model.set_env(env)


    run_info = {"run_num": args.run_num,
                "env_id": args.env,
                "full_param_traj_dir_path": full_param_traj_dir_path}

    # model = PPO2(policy=policy, env=env, n_steps=args.n_steps, nminibatches=args.nminibatches, lam=0.95, gamma=0.99,
    #              noptepochs=10,
    #              ent_coef=0.0, learning_rate=3e-4, cliprange=0.2, optimizer=args.optimizer)

    model.tell_run_info(run_info)
    episode_returns = model.learn(total_timesteps=args.ppo_num_timesteps)

    model.save(f"{conti_ppo_save_dir}/ppo2")

    env.save_running_average(conti_ppo_save_dir)
    return episode_returns, full_param_traj_dir_path
示例#2
0
def main():

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    args, cma_unknown_args = common_arg_parser.parse_known_args()

    this_run_dir = get_dir_path_for_this_run(args)
    plot_dir_alg = get_plot_dir(args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir,
                                                      params_scope="pi")
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)
    if not os.path.exists(plot_dir_alg):
        os.makedirs(plot_dir_alg)

    final_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_final")
    final_params = pd.read_csv(final_file, header=None).values[0]

    def make_env():
        env_out = gym.make(args.env)

        env_out = bench.Monitor(env_out,
                                logger.get_dir(),
                                allow_early_resets=True)
        return env_out

    env = DummyVecEnv([make_env])

    if args.normalize:
        env = VecNormalize(env)

    model = PPO2.load(f"{save_dir}/ppo2")  # this also loads V function
    model.set_pi_from_flat(final_params)

    if args.normalize:
        env.load_running_average(save_dir)

    obz_tensor = model.act_model.fake_input_tensor

    some_neuron = model.act_model.policy_neurons[2][-1]

    grads = tf.gradients(tf.math.negative(some_neuron), obz_tensor)

    grads = list(zip(grads, obz_tensor))

    trainer = tf.train.AdamOptimizer(learning_rate=0.01, epsilon=1e-5)

    train_op = trainer.apply_gradients(grads)
    for i in range(10000):
        obz, _ = model.sess.run([obz_tensor, train_op])
def main():

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()
    run_nums = cma_args.run_nums_to_check
    run_nums = [int(run_num) for run_num in run_nums.split(":")]

    final_params_list = []
    start_params_list = []

    for run_num in run_nums:
        cma_args.run_num = run_num
        if os.path.exists(get_dir_path_for_this_run(cma_args)):

            this_run_dir = get_dir_path_for_this_run(cma_args)
            plot_dir_alg = get_plot_dir(cma_args)

            traj_params_dir_name = get_full_params_dir(this_run_dir)
            intermediate_data_dir = get_intermediate_data_dir(
                this_run_dir, params_scope="pi")
            save_dir = get_save_dir(this_run_dir)

            if not os.path.exists(intermediate_data_dir):
                os.makedirs(intermediate_data_dir)
            if not os.path.exists(plot_dir_alg):
                os.makedirs(plot_dir_alg)

            start_file = get_full_param_traj_file_path(traj_params_dir_name,
                                                       "pi_start")
            start_params = pd.read_csv(start_file, header=None).values[0]

            final_file = get_full_param_traj_file_path(traj_params_dir_name,
                                                       "pi_final")
            final_params = pd.read_csv(final_file, header=None).values[0]

            final_params_list.append(final_params)
            start_params_list.append(start_params)

            cma_args.run_num += 1

    final_params_distances = []
    for i in range(len(final_params_list)):
        for j in range(i + 1, len(final_params_list)):
            final_params_distances.append(
                LA.norm(final_params_list[i] - final_params_list[j], ord=2))

    plot_dir = get_plot_dir(cma_args)
    if not os.path.exists(plot_dir):
        os.makedirs(plot_dir)
    np.savetxt(f"{plot_dir}/final_params_distances.txt",
               final_params_distances,
               delimiter=",")
def main():

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    origin_name = "final_param"

    this_run_dir = get_dir_path_for_this_run(cma_args)
    plot_dir_alg = get_plot_dir(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir,
                                                      params_scope="pi")
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)
    if not os.path.exists(plot_dir_alg):
        os.makedirs(plot_dir_alg)

    start_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_start")
    start_params = pd.read_csv(start_file, header=None).values[0]
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    pca_indexes = cma_args.other_pca_index
    pca_indexes = [int(pca_index) for pca_index in pca_indexes.split(":")]

    n_comp_to_project_on = pca_indexes
    result = do_pca(n_components=cma_args.n_components,
                    traj_params_dir_name=traj_params_dir_name,
                    intermediate_data_dir=intermediate_data_dir,
                    use_IPCA=cma_args.use_IPCA,
                    chunk_size=cma_args.chunk_size,
                    reuse=True)
    logger.debug("after pca")

    if origin_name == "final_param":
        origin_param = result["final_params"]
    elif origin_name == "start_param":
        origin_param = start_params
    else:
        origin_param = result["mean_param"]

    proj_coords = project(result["pcs_components"],
                          pcs_slice=n_comp_to_project_on,
                          origin_name=origin_name,
                          origin_param=origin_param,
                          IPCA_chunk_size=cma_args.chunk_size,
                          traj_params_dir_name=traj_params_dir_name,
                          intermediate_data_dir=intermediate_data_dir,
                          n_components=cma_args.n_components,
                          reuse=True)
    '''
    ==========================================================================================
    eval all xy coords
    ==========================================================================================
    '''
    other_pcs_plot_dir = get_other_pcs_plane_plot_dir(plot_dir_alg,
                                                      pca_indexes)

    if not os.path.exists(other_pcs_plot_dir):
        os.makedirs(other_pcs_plot_dir)

    plot_3d_trajectory_path_only(
        other_pcs_plot_dir,
        f"{pca_indexes}_final_origin_3d_path_plot",
        proj_coords,
        explained_ratio=result["explained_variance_ratio"][pca_indexes])
示例#5
0
def train(args):
    """
    Runs the test
    """
    args, argv = mujoco_arg_parser().parse_known_args(args)
    logger.log(f"#######TRAIN: {args}")
    args.alg = "ppo2"

    this_run_dir = get_dir_path_for_this_run(args)
    if os.path.exists(this_run_dir):
        import shutil
        shutil.rmtree(this_run_dir)
    os.makedirs(this_run_dir)

    log_dir = get_log_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)
    logger.configure(log_dir)

    def make_env():
        env_out = gym.make(args.env)
        env_out.env.visualize = False
        env_out = bench.Monitor(env_out,
                                logger.get_dir(),
                                allow_early_resets=True)
        return env_out

    env = DummyVecEnv([make_env])
    env.envs[0].env.env.disableViewer = True
    set_global_seeds(args.seed)
    env.envs[0].env.env.seed(args.seed)

    if args.normalize:
        env = VecNormalize(env)

    policy = MlpPolicy

    # extra run info I added for my purposes

    full_param_traj_dir_path = get_full_params_dir(this_run_dir)

    if os.path.exists(full_param_traj_dir_path):
        import shutil
        shutil.rmtree(full_param_traj_dir_path)
    os.makedirs(full_param_traj_dir_path)

    if os.path.exists(save_dir):
        import shutil
        shutil.rmtree(save_dir)
    os.makedirs(save_dir)

    run_info = {
        "run_num": args.run_num,
        "env_id": args.env,
        "full_param_traj_dir_path": full_param_traj_dir_path,
        "state_samples_to_collect": args.state_samples_to_collect
    }

    model = PPO2(policy=policy,
                 env=env,
                 n_steps=args.n_steps,
                 nminibatches=args.nminibatches,
                 lam=0.95,
                 gamma=0.99,
                 noptepochs=10,
                 ent_coef=0.0,
                 learning_rate=3e-4,
                 cliprange=0.2,
                 optimizer=args.optimizer,
                 seed=args.seed)
    model.tell_run_info(run_info)

    model.learn(total_timesteps=args.num_timesteps)

    model.save(f"{save_dir}/ppo2")

    if args.normalize:
        env.save_running_average(save_dir)
def visualize_augment_experiment(augment_num_timesteps,
                                 top_num_to_include_slice,
                                 augment_seed,
                                 augment_run_num,
                                 network_size,
                                 policy_env,
                                 policy_num_timesteps,
                                 policy_run_num,
                                 policy_seed,
                                 eval_seed,
                                 eval_run_num,
                                 learning_rate,
                                 additional_note,
                                 result_dir,
                                 lagrangian_inds_to_include=None):

    args = AttributeDict()

    args.normalize = True
    args.num_timesteps = augment_num_timesteps
    args.run_num = augment_run_num
    args.alg = "ppo2"
    args.seed = augment_seed

    logger.log(f"#######TRAIN: {args}")
    # non_linear_global_dict
    timestamp = get_time_stamp('%Y_%m_%d_%H_%M_%S')
    experiment_label = f"learning_rate_{learning_rate}timestamp_{timestamp}_augment_num_timesteps{augment_num_timesteps}" \
                       f"_top_num_to_include{top_num_to_include_slice.start}_{top_num_to_include_slice.stop}" \
                       f"_augment_seed{augment_seed}_augment_run_num{augment_run_num}_network_size{network_size}" \
                       f"_policy_num_timesteps{policy_num_timesteps}_policy_run_num{policy_run_num}_policy_seed{policy_seed}" \
                       f"_eval_seed{eval_seed}_eval_run_num{eval_run_num}_additional_note_{additional_note}"

    if policy_env == "DartWalker2d-v1":
        entry_point = 'gym.envs.dart:DartWalker2dEnv_aug_input'
    elif policy_env == "DartHopper-v1":
        entry_point = 'gym.envs.dart:DartHopperEnv_aug_input'
    elif policy_env == "DartHalfCheetah-v1":
        entry_point = 'gym.envs.dart:DartHalfCheetahEnv_aug_input'
    elif policy_env == "DartSnake7Link-v1":
        entry_point = 'gym.envs.dart:DartSnake7LinkEnv_aug_input'
    else:
        raise NotImplemented()

    this_run_dir = get_experiment_path_for_this_run(
        entry_point,
        args.num_timesteps,
        args.run_num,
        args.seed,
        learning_rate=learning_rate,
        top_num_to_include=top_num_to_include_slice,
        result_dir=result_dir,
        network_size=network_size)
    full_param_traj_dir_path = get_full_params_dir(this_run_dir)
    log_dir = get_log_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    create_dir_remove(this_run_dir)
    create_dir_remove(full_param_traj_dir_path)
    create_dir_remove(save_dir)
    create_dir_remove(log_dir)
    logger.configure(log_dir)

    # note this is only linear
    if lagrangian_inds_to_include is None:
        linear_top_vars_list = read_linear_top_var(policy_env,
                                                   policy_num_timesteps,
                                                   policy_run_num, policy_seed,
                                                   eval_seed, eval_run_num,
                                                   additional_note)

        # keys_to_include = ["COM", "M", "Coriolis", "total_contact_forces_contact_bodynode",
        #                    "com_jacobian", "contact_bodynode_jacobian"]
        keys_to_include = ["COM", "M", "Coriolis", "com_jacobian"]
        # lagrangian_inds_to_include = linear_top_vars_list[top_num_to_include_slice]
        lagrangian_inds_to_include = get_wanted_lagrangians(
            keys_to_include, linear_top_vars_list, top_num_to_include_slice)

    with open(f"{log_dir}/lagrangian_inds_to_include.json", 'w') as fp:
        json.dump(lagrangian_inds_to_include, fp)

    args.env = f'{experiment_label}_{entry_point}-v1'
    register(id=args.env,
             entry_point=entry_point,
             max_episode_steps=1000,
             kwargs={"lagrangian_inds_to_include": lagrangian_inds_to_include})

    def make_env():
        env_out = gym.make(args.env)
        env_out.env.visualize = False
        env_out = bench.Monitor(env_out,
                                logger.get_dir(),
                                allow_early_resets=True)
        return env_out

    env = DummyVecEnv([make_env])
    walker_env = env.envs[0].env.env
    walker_env.disableViewer = True

    if args.normalize:
        env = VecNormalize(env)
    policy = MlpPolicy

    # extra run info I added for my purposes
    run_info = {
        "run_num": args.run_num,
        "env_id": args.env,
        "full_param_traj_dir_path": full_param_traj_dir_path
    }

    layers = [network_size, network_size]
    set_global_seeds(args.seed)
    walker_env.seed(args.seed)

    policy_kwargs = {"net_arch": [dict(vf=layers, pi=layers)]}
    model = PPO2(policy=policy,
                 env=env,
                 n_steps=4096,
                 nminibatches=64,
                 lam=0.95,
                 gamma=0.99,
                 noptepochs=10,
                 ent_coef=0.0,
                 learning_rate=learning_rate,
                 cliprange=0.2,
                 optimizer='adam',
                 policy_kwargs=policy_kwargs,
                 seed=args.seed)
    model.tell_run_info(run_info)

    model.learn(total_timesteps=args.num_timesteps, seed=args.seed)

    model.save(f"{save_dir}/ppo2")

    if args.normalize:
        env.save_running_average(save_dir)

    return log_dir
def visualize_policy_and_collect_COM(
        augment_num_timesteps, top_num_to_include_slice, augment_seed,
        augment_run_num, network_size, policy_env, policy_num_timesteps,
        policy_run_num, policy_seed, eval_seed, eval_run_num, learning_rate,
        additional_note, metric_param):
    result_dir = get_result_dir(policy_env, policy_num_timesteps,
                                policy_run_num, policy_seed, eval_seed,
                                eval_run_num, additional_note, metric_param)
    args = AttributeDict()

    args.normalize = True
    args.num_timesteps = augment_num_timesteps
    args.run_num = augment_run_num
    args.alg = "ppo2"
    args.seed = augment_seed

    logger.log(f"#######VISUALIZE: {args}")
    # non_linear_global_dict
    linear_global_dict, non_linear_global_dict, lagrangian_values, input_values, layers_values, all_weights = read_all_data(
        policy_env,
        policy_num_timesteps,
        policy_run_num,
        policy_seed,
        eval_seed,
        eval_run_num,
        additional_note=additional_note)
    timestamp = get_time_stamp('%Y_%m_%d_%H_%M_%S')
    experiment_label = f"learning_rate_{learning_rate}timestamp_{timestamp}_augment_num_timesteps{augment_num_timesteps}" \
                       f"_top_num_to_include{top_num_to_include_slice.start}_{top_num_to_include_slice.stop}" \
                       f"_augment_seed{augment_seed}_augment_run_num{augment_run_num}_network_size{network_size}" \
                       f"_policy_num_timesteps{policy_num_timesteps}_policy_run_num{policy_run_num}_policy_seed{policy_seed}" \
                       f"_eval_seed{eval_seed}_eval_run_num{eval_run_num}_additional_note_{additional_note}"

    entry_point = 'gym.envs.dart:DartWalker2dEnv_aug_input'

    this_run_dir = get_experiment_path_for_this_run(
        entry_point,
        args.num_timesteps,
        args.run_num,
        args.seed,
        learning_rate=learning_rate,
        top_num_to_include=top_num_to_include_slice,
        result_dir=result_dir,
        network_size=network_size,
        metric_param=metric_param)
    traj_params_dir_name = get_full_params_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    aug_plot_dir = get_aug_plot_dir(this_run_dir) + "_vis"

    final_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_final")
    final_params = pd.read_csv(final_file, header=None).values[0]

    args.env = f'{experiment_label}_{entry_point}-v1'
    register(id=args.env,
             entry_point=entry_point,
             max_episode_steps=1000,
             kwargs={
                 'linear_global_dict': linear_global_dict,
                 'non_linear_global_dict': non_linear_global_dict,
                 'top_to_include_slice': top_num_to_include_slice,
                 'aug_plot_dir': aug_plot_dir,
                 "lagrangian_values": lagrangian_values,
                 "layers_values": layers_values
             })

    def make_env():
        env_out = gym.make(args.env)

        env_out = bench.Monitor(env_out,
                                logger.get_dir(),
                                allow_early_resets=True)
        return env_out

    env = DummyVecEnv([make_env])
    walker_env = env.envs[0].env.env

    walker_env.disableViewer = False

    if args.normalize:
        env = VecNormalize(env)

    set_global_seeds(args.seed)
    walker_env.seed(args.seed)

    model = PPO2.load(f"{save_dir}/ppo2", seed=augment_seed)
    model.set_pi_from_flat(final_params)
    if args.normalize:
        env.load_running_average(save_dir)

    sk = env.venv.envs[0].env.env.robot_skeleton
    lagrangian_values = {}

    obs = np.zeros((env.num_envs, ) + env.observation_space.shape)

    obs[:] = env.reset()

    env = VecVideoRecorder(env,
                           aug_plot_dir,
                           record_video_trigger=lambda x: x == 0,
                           video_length=3000,
                           name_prefix="vis_this_policy")

    lagrangian_values["M"] = [sk.M.reshape((-1, 1))]
    lagrangian_values["COM"] = [sk.C.reshape((-1, 1))]
    lagrangian_values["Coriolis"] = [sk.c.reshape((-1, 1))]
    lagrangian_values["q"] = [sk.q.reshape((-1, 1))]
    lagrangian_values["dq"] = [sk.dq.reshape((-1, 1))]

    contact_values = {}

    neuron_values = model.give_neuron_values(obs)
    raw_layer_values_list = [[neuron_value.reshape((-1, 1))]
                             for neuron_value in neuron_values]

    env.render()
    ep_infos = []
    steps_to_first_done = 0
    first_done = False

    # epi_rew = 0
    for _ in range(3000):
        actions = model.step(obs)[0]

        # yield neuron_values
        obs, rew, done, infos = env.step(actions)
        # epi_rew+= rew[0]
        if done and not first_done:
            first_done = True

        if not first_done:
            steps_to_first_done += 1

        neuron_values = model.give_neuron_values(obs)

        for i, layer in enumerate(neuron_values):
            raw_layer_values_list[i].append(layer.reshape((-1, 1)))

        # fill_contacts_jac_dict(infos[0]["contacts"], contact_dict=contact_values, neuron_values=neuron_values)

        lagrangian_values["M"].append(sk.M.reshape((-1, 1)))
        lagrangian_values["q"].append(sk.q.reshape((-1, 1)))
        lagrangian_values["dq"].append(sk.dq.reshape((-1, 1)))
        lagrangian_values["COM"].append(sk.C.reshape((-1, 1)))
        lagrangian_values["Coriolis"].append(sk.c.reshape((-1, 1)))

        # env.render()

        # time.sleep(1)
        for info in infos:
            maybe_ep_info = info.get('episode')
            if maybe_ep_info is not None:
                ep_infos.append(maybe_ep_info)

        env.render()
        done = done.any()
        if done:
            episode_rew = safe_mean([ep_info['r'] for ep_info in ep_infos])
            print(f'episode_rew={episode_rew}')
            # print(f'episode_rew={epi_rew}')
            # epi_rew = 0
            obs = env.reset()

    #Hstack into a big matrix
    lagrangian_values["M"] = np.hstack(lagrangian_values["M"])
    lagrangian_values["COM"] = np.hstack(lagrangian_values["COM"])
    lagrangian_values["Coriolis"] = np.hstack(lagrangian_values["Coriolis"])
    lagrangian_values["q"] = np.hstack(lagrangian_values["q"])
    lagrangian_values["dq"] = np.hstack(lagrangian_values["dq"])

    # for contact_body_name, l in contact_values.items():
    #     body_contact_dict = contact_values[contact_body_name]
    #     for name, l in body_contact_dict.items():
    #         body_contact_dict[name] = np.hstack(body_contact_dict[name])
    input_values = np.hstack(raw_layer_values_list[0])

    layers_values = [
        np.hstack(layer_list) for layer_list in raw_layer_values_list
    ][1:-2]  # drop variance and inputs

    for i, com in enumerate(lagrangian_values["COM"]):
        plt.figure()
        plt.plot(np.arange(len(com)), com)
        plt.xlabel("time")
        plt.ylabel(f"COM{i}")

        plt.savefig(f"{aug_plot_dir}/COM{i}.jpg")
        plt.close()
def main():


    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    # origin = "final_param"
    origin = cma_args.origin


    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)
    save_dir = get_save_dir( this_run_dir)


    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)

    cma_run_num, cma_intermediate_data_dir = generate_run_dir(get_cma_and_then_ppo_run_dir,
                                                              intermediate_dir=intermediate_data_dir,
                                                              n_comp=cma_args.n_comp_to_use,
                                                              cma_steps=cma_args.cma_num_timesteps
                                                              )
    # cma_intermediate_data_dir = get_cma_and_then_ppo_run_dir(intermediate_dir = intermediate_data_dir,
    #                                 n_comp = cma_args.n_comp_to_use,
    #                                 cma_steps = cma_args.cma_num_timesteps, run_num=0)
    best_theta_file_name = "best theta from cma"



    # if not os.path.exists(f"{cma_intermediate_data_dir}/{best_theta_file_name}.csv") or \
    #     not os.path.exists(f"{cma_intermediate_data_dir}/opt_mean_path.csv"):
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    proj_or_not = (cma_args.n_comp_to_use == 2)
    result = do_pca(cma_args.n_components, cma_args.n_comp_to_use, traj_params_dir_name, intermediate_data_dir,
                    proj=proj_or_not,
                    origin=origin, use_IPCA=cma_args.use_IPCA, chunk_size=cma_args.chunk_size, reuse=True)
    logger.debug("after pca")
    '''
    ==========================================================================================
    eval all xy coords
    ==========================================================================================
    '''


    from stable_baselines.low_dim_analysis.common import plot_contour_trajectory, gen_subspace_coords,do_eval_returns, \
        do_proj_on_first_n

    if origin=="final_param":
        origin_param = result["final_concat_params"]
    else:
        origin_param = result["mean_param"]

    logger.log("grab start params")
    start_file = get_full_param_traj_file_path(traj_params_dir_name, "start")
    start_params = pd.read_csv(start_file, header=None).values[0]
    starting_coord = do_proj_on_first_n(start_params, result["first_n_pcs"], origin_param)
    # starting_coord = np.random.rand(1, cma_args.n_comp_to_use)





    # starting_coord = (1/2*np.max(xcoordinates_to_eval), 1/2*np.max(ycoordinates_to_eval)) # use mean
    assert result["first_n_pcs"].shape[0] == cma_args.n_comp_to_use
    mean_rets, min_rets, max_rets, opt_path, opt_path_mean, best_theta = do_cma(cma_args, result["first_n_pcs"],
                                                                    origin_param, save_dir, starting_coord, cma_args.cma_var)
    np.savetxt(f"{cma_intermediate_data_dir}/opt_mean_path.csv", opt_path_mean, delimiter=',')
    np.savetxt(f"{cma_intermediate_data_dir}/{best_theta_file_name}.csv", best_theta, delimiter=',')




    episode_returns, conti_ppo_full_param_traj_dir_path = do_ppo(args=cma_args, start_theta=best_theta, parent_this_run_dir=cma_intermediate_data_dir, full_space_save_dir=save_dir)
    np.savetxt(f"{cma_intermediate_data_dir}/ppo part returns.csv", episode_returns, delimiter=',')



    plot_dir = get_plot_dir(cma_args)
    cma_and_then_ppo_plot_dir = get_cma_and_then_ppo_plot_dir(plot_dir, cma_args.n_comp_to_use,
                                                 cma_run_num, cma_num_steps=cma_args.cma_num_timesteps,
                                                              ppo_num_steps=cma_args.ppo_num_timesteps,
                                                              origin=origin)
    if not os.path.exists(cma_and_then_ppo_plot_dir):
        os.makedirs(cma_and_then_ppo_plot_dir)



    if cma_args.n_comp_to_use <= 2:
        proj_coords = result["proj_coords"]
        assert proj_coords.shape[1] == 2

        xcoordinates_to_eval, ycoordinates_to_eval = gen_subspace_coords(cma_args, np.vstack((proj_coords, opt_path_mean)).T)

        eval_returns = do_eval_returns(cma_args, intermediate_data_dir, result["first_n_pcs"], origin_param,
                        xcoordinates_to_eval, ycoordinates_to_eval, save_dir, pca_center=origin, reuse=False)

        plot_contour_trajectory(cma_and_then_ppo_plot_dir, f"{origin}_origin_eval_return_contour_plot", xcoordinates_to_eval,
                                ycoordinates_to_eval, eval_returns, proj_coords[:, 0], proj_coords[:, 1],
                                result["explained_variance_ratio"][:2],
                                num_levels=25, show=False, sub_alg_path=opt_path_mean)


    ret_plot_name = f"cma return on {cma_args.n_comp_to_use} dim space of real pca plane, " \
                    f"explained {np.sum(result['explained_variance_ratio'][:cma_args.n_comp_to_use])}"
    plot_cma_returns(cma_and_then_ppo_plot_dir, ret_plot_name, mean_rets, min_rets, max_rets, show=False)


    final_ppo_ep_name = f"final episodes returns after CMA"
    plot_2d(cma_and_then_ppo_plot_dir, final_ppo_ep_name, np.arange(len(episode_returns)),
            episode_returns, "num episode", "episode returns", False)



    #
    # if cma_args.n_comp_to_use == 2:
    #     proj_coords = result["proj_coords"]
    #     assert proj_coords.shape[1] == 2
    #
    #     xcoordinates_to_eval, ycoordinates_to_eval = gen_subspace_coords(cma_args, np.vstack((proj_coords, opt_path_mean)).T)
    #
    #     eval_returns = do_eval_returns(cma_args, intermediate_data_dir, result["first_n_pcs"], origin_param,
    #                     xcoordinates_to_eval, ycoordinates_to_eval, save_dir, pca_center=origin, reuse=False)
    #
    #     plot_contour_trajectory(cma_and_then_ppo_plot_dir, f"{origin}_origin_eval_return_contour_plot", xcoordinates_to_eval,
    #                             ycoordinates_to_eval, eval_returns, proj_coords[:, 0], proj_coords[:, 1],
    #                             result["explained_variance_ratio"][:2],
    #                             num_levels=25, show=False, sub_alg_path=opt_path_mean)


    skip_rows = lambda x: x%2 == 0
    conti_ppo_params = get_allinone_concat_df(conti_ppo_full_param_traj_dir_path, index=0, skip_rows=skip_rows).values
    opt_mean_path_in_old_basis = [mean_projected_param.dot(result["first_n_pcs"]) + result["mean_param"] for mean_projected_param in opt_path_mean]
    distance_to_final = [LA.norm(opt_mean - result["final_concat_params"], ord=2) for opt_mean in np.vstack((opt_mean_path_in_old_basis, conti_ppo_params))]
    distance_to_final_plot_name = f"distance_to_final over generations "
    plot_2d(cma_and_then_ppo_plot_dir, distance_to_final_plot_name, np.arange(len(distance_to_final)), distance_to_final, "num generation", "distance_to_final", False)
def main():
    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    # origin = "final_param"
    origin_name = cma_args.origin

    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir,
                                                      params_scope="pi")
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)
    pca_indexes = cma_args.other_pca_index
    pca_indexes = [int(pca_index) for pca_index in pca_indexes.split(":")]

    cma_run_num, cma_intermediate_data_dir = generate_run_dir(
        get_cma_and_then_ppo_run_dir,
        intermediate_dir=intermediate_data_dir,
        pca_indexes=pca_indexes,
        cma_steps=cma_args.cma_num_timesteps)

    best_theta_file_name = "best theta from cma"

    start_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_start")
    start_params = pd.read_csv(start_file, header=None).values[0]

    # if not os.path.exists(f"{cma_intermediate_data_dir}/{best_theta_file_name}.csv") or \
    #     not os.path.exists(f"{cma_intermediate_data_dir}/opt_mean_path.csv"):
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''

    result = do_pca(n_components=cma_args.n_components,
                    traj_params_dir_name=traj_params_dir_name,
                    intermediate_data_dir=intermediate_data_dir,
                    use_IPCA=cma_args.use_IPCA,
                    chunk_size=cma_args.chunk_size,
                    reuse=True)
    logger.debug("after pca")
    '''
    ==========================================================================================
    eval all xy coords
    ==========================================================================================
    '''

    from stable_baselines.low_dim_analysis.common import plot_contour_trajectory, gen_subspace_coords, do_eval_returns, \
        do_proj_on_first_n
    logger.log("grab start params")
    start_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_start")
    start_params = pd.read_csv(start_file, header=None).values[0]

    if origin_name == "final_param":
        origin_param = result["final_concat_params"]
    elif origin_name == "start_param":
        origin_param = start_params
    else:
        origin_param = result["mean_param"]

    pcs = result["pcs_components"]
    pcs_to_use = pcs[pca_indexes]

    starting_coord = do_proj_on_first_n(start_params, pcs_to_use, origin_param)

    plot_dir = get_plot_dir(cma_args)
    cma_and_then_ppo_plot_dir = get_cma_and_then_ppo_plot_dir(
        plot_dir,
        pca_indexes,
        cma_run_num,
        cma_num_steps=cma_args.cma_num_timesteps,
        ppo_num_steps=cma_args.ppo_num_timesteps,
        origin=origin_name)

    # starting_coord = (1/2*np.max(xcoordinates_to_eval), 1/2*np.max(ycoordinates_to_eval)) # use mean
    mean_rets, min_rets, max_rets, opt_path, opt_path_mean, best_pi_theta = do_cma(
        cma_args, pcs_to_use, origin_param, save_dir, starting_coord,
        cma_args.cma_var)

    # np.savetxt(f"{cma_intermediate_data_dir}/opt_mean_path.csv", opt_path_mean, delimiter=',')
    np.savetxt(f"{cma_intermediate_data_dir}/{best_theta_file_name}.csv",
               best_pi_theta,
               delimiter=',')

    ret_plot_name = f"cma return on {pca_indexes} dim space of real pca plane, " \
                    f"explained {np.sum(result['explained_variance_ratio'][pca_indexes])}"
    plot_cma_returns(cma_and_then_ppo_plot_dir,
                     ret_plot_name,
                     mean_rets,
                     min_rets,
                     max_rets,
                     show=False)

    vf_final_file = get_full_param_traj_file_path(traj_params_dir_name,
                                                  "vf_final")
    vf_final_params = pd.read_csv(vf_final_file, header=None).values[0]

    episode_returns, conti_ppo_full_param_traj_dir_path = do_ppo(
        args=cma_args,
        start_pi_theta=best_pi_theta,
        parent_this_run_dir=cma_intermediate_data_dir,
        full_space_save_dir=save_dir,
        vf_final_params=vf_final_params)
    # dump_row_write_csv(cma_intermediate_data_dir, episode_returns, "ppo part returns")
    np.savetxt(f"{cma_intermediate_data_dir}/ppo part returns.csv",
               episode_returns,
               delimiter=",")

    if not os.path.exists(cma_and_then_ppo_plot_dir):
        os.makedirs(cma_and_then_ppo_plot_dir)

    conti_ppo_params = get_allinone_concat_df(
        conti_ppo_full_param_traj_dir_path).values

    if len(pca_indexes) <= 2:

        pcs_to_plot_contour = pca_indexes
        if len(pcs_to_plot_contour) == 1:
            if pcs_to_plot_contour[0] + 1 < cma_args.n_components:
                pcs_to_plot_contour.append(pcs_to_plot_contour[0] + 1)
            else:
                pcs_to_plot_contour.append(pcs_to_plot_contour[0] - 1)

        proj_coords = project(result["pcs_components"],
                              pcs_slice=pcs_to_plot_contour,
                              origin_name=origin_name,
                              origin_param=origin_param,
                              IPCA_chunk_size=cma_args.chunk_size,
                              traj_params_dir_name=traj_params_dir_name,
                              intermediate_data_dir=intermediate_data_dir,
                              n_components=cma_args.n_components,
                              reuse=False)

        assert proj_coords.shape[1] == 2
        if len(pca_indexes) == 1:
            opt_path_mean_2d = np.hstack(
                (opt_path_mean, np.zeros((1, len(opt_path_mean))).T))
        else:
            opt_path_mean_2d = opt_path_mean
        xcoordinates_to_eval, ycoordinates_to_eval = gen_subspace_coords(
            cma_args,
            np.vstack((proj_coords, opt_path_mean_2d)).T)

        projected_after_ppo_params = do_proj_on_first_n(
            conti_ppo_params, pcs[pcs_to_plot_contour], origin_param)
        full_path = np.vstack((opt_path_mean_2d, projected_after_ppo_params))

        eval_returns = do_eval_returns(cma_args,
                                       intermediate_data_dir,
                                       pcs[pcs_to_plot_contour],
                                       origin_param,
                                       xcoordinates_to_eval,
                                       ycoordinates_to_eval,
                                       save_dir,
                                       pca_center=origin_name,
                                       reuse=False)

        plot_contour_trajectory(
            cma_and_then_ppo_plot_dir,
            f"{origin_name}_origin_eval_return_contour_plot",
            xcoordinates_to_eval,
            ycoordinates_to_eval,
            eval_returns,
            proj_coords[:, 0],
            proj_coords[:, 1],
            result["explained_variance_ratio"][pcs_to_plot_contour],
            num_levels=25,
            show=False,
            sub_alg_path=full_path)

    final_ppo_ep_name = f"final episodes returns CMA PPO"
    plot_2d(cma_and_then_ppo_plot_dir, final_ppo_ep_name,
            np.arange(len(episode_returns)), episode_returns, "num episode",
            "episode returns", False)

    opt_mean_path_in_old_basis = [
        mean_projected_param.dot(pcs_to_use) + result["mean_param"]
        for mean_projected_param in opt_path_mean
    ]

    distance_to_final = [
        LA.norm(opt_mean - result["final_params"], ord=2)
        for opt_mean in opt_mean_path_in_old_basis
    ]
    distance_to_final_plot_name = f"distance_to_final over generations of CMA "
    plot_2d(cma_and_then_ppo_plot_dir, distance_to_final_plot_name,
            np.arange(len(distance_to_final)), distance_to_final,
            "num generation", "distance_to_final", False)

    distance_to_final_ppo = [
        LA.norm(opt_mean - result["final_params"], ord=2)
        for opt_mean in conti_ppo_params
    ]
    distance_to_final_plot_name = f"distance_to_final over generations of PPO"
    plot_2d(cma_and_then_ppo_plot_dir, distance_to_final_plot_name,
            np.arange(len(distance_to_final_ppo)), distance_to_final_ppo,
            "num generation", "distance_to_final", False)
示例#10
0
def visualize_policy_and_collect_COM(seed, run_num, policy_env,
                                     policy_num_timesteps, policy_seed,
                                     policy_run_num):

    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    args, cma_unknown_args = common_arg_parser.parse_known_args()
    args.env = policy_env
    args.seed = policy_seed
    args.num_timesteps = policy_num_timesteps
    args.run_num = policy_run_num
    this_run_dir = get_dir_path_for_this_run(args)
    traj_params_dir_name = get_full_params_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    final_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_final")
    final_params = pd.read_csv(final_file, header=None).values[0]

    def make_env():
        env_out = gym.make(args.env)
        env_out.env.disableViewer = False

        env_out = bench.Monitor(env_out,
                                logger.get_dir(),
                                allow_early_resets=True)
        env_out.seed(seed)
        return env_out

    env = DummyVecEnv([make_env])

    if args.normalize:
        env = VecNormalize(env)

    model = PPO2.load(f"{save_dir}/ppo2", seed=seed)
    model.set_pi_from_flat(final_params)
    if args.normalize:
        env.load_running_average(save_dir)

    sk = env.venv.envs[0].env.env.robot_skeleton
    lagrangian_values = {}

    obs = np.zeros((env.num_envs, ) + env.observation_space.shape)

    obs[:] = env.reset()
    plot_dir = get_plot_dir(policy_env=args.env,
                            policy_num_timesteps=policy_num_timesteps,
                            policy_run_num=policy_run_num,
                            policy_seed=policy_seed,
                            eval_seed=seed,
                            eval_run_num=run_num,
                            additional_note="")
    if os.path.exists(plot_dir):
        shutil.rmtree(plot_dir)
    os.makedirs(plot_dir)
    env = VecVideoRecorder(env,
                           plot_dir,
                           record_video_trigger=lambda x: x == 0,
                           video_length=3000,
                           name_prefix="3000000agent-{}".format(args.env))

    lagrangian_values["M"] = [sk.M.reshape((-1, 1))]
    lagrangian_values["COM"] = [sk.C.reshape((-1, 1))]
    lagrangian_values["Coriolis"] = [sk.c.reshape((-1, 1))]
    lagrangian_values["q"] = [sk.q.reshape((-1, 1))]
    lagrangian_values["dq"] = [sk.dq.reshape((-1, 1))]

    contact_values = {}

    neuron_values = model.give_neuron_values(obs)
    raw_layer_values_list = [[neuron_value.reshape((-1, 1))]
                             for neuron_value in neuron_values]

    env.render()
    ep_infos = []
    steps_to_first_done = 0
    first_done = False

    # epi_rew = 0
    for _ in range(3000):
        actions = model.step(obs)[0]

        # yield neuron_values
        obs, rew, done, infos = env.step(actions)
        # epi_rew+= rew[0]
        if done and not first_done:
            first_done = True

        if not first_done:
            steps_to_first_done += 1

        neuron_values = model.give_neuron_values(obs)

        for i, layer in enumerate(neuron_values):
            raw_layer_values_list[i].append(layer.reshape((-1, 1)))

        # fill_contacts_jac_dict(infos[0]["contacts"], contact_dict=contact_values, neuron_values=neuron_values)

        lagrangian_values["M"].append(sk.M.reshape((-1, 1)))
        lagrangian_values["q"].append(sk.q.reshape((-1, 1)))
        lagrangian_values["dq"].append(sk.dq.reshape((-1, 1)))
        lagrangian_values["COM"].append(sk.C.reshape((-1, 1)))
        lagrangian_values["Coriolis"].append(sk.c.reshape((-1, 1)))

        # env.render()

        # time.sleep(1)
        for info in infos:
            maybe_ep_info = info.get('episode')
            if maybe_ep_info is not None:
                ep_infos.append(maybe_ep_info)

        env.render()
        done = done.any()
        if done:
            episode_rew = safe_mean([ep_info['r'] for ep_info in ep_infos])
            print(f'episode_rew={episode_rew}')
            # print(f'episode_rew={epi_rew}')
            # epi_rew = 0
            obs = env.reset()

    #Hstack into a big matrix
    lagrangian_values["M"] = np.hstack(lagrangian_values["M"])
    lagrangian_values["COM"] = np.hstack(lagrangian_values["COM"])
    lagrangian_values["Coriolis"] = np.hstack(lagrangian_values["Coriolis"])
    lagrangian_values["q"] = np.hstack(lagrangian_values["q"])
    lagrangian_values["dq"] = np.hstack(lagrangian_values["dq"])

    # for contact_body_name, l in contact_values.items():
    #     body_contact_dict = contact_values[contact_body_name]
    #     for name, l in body_contact_dict.items():
    #         body_contact_dict[name] = np.hstack(body_contact_dict[name])
    input_values = np.hstack(raw_layer_values_list[0])

    layers_values = [
        np.hstack(layer_list) for layer_list in raw_layer_values_list
    ][1:-2]  # drop variance and inputs

    for i, com in enumerate(lagrangian_values["COM"]):
        plt.figure()
        plt.plot(np.arange(len(com)), com)
        plt.xlabel("time")
        plt.ylabel(f"COM{i}")

        plt.savefig(f"{plot_dir}/COM{i}.jpg")
        plt.close()
def main():

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    args, cma_unknown_args = common_arg_parser.parse_known_args()

    this_run_dir = get_dir_path_for_this_run(args)
    plot_dir_alg = get_plot_dir(args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir,
                                                      params_scope="pi")
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)
    if not os.path.exists(plot_dir_alg):
        os.makedirs(plot_dir_alg)

    final_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_final")
    final_params = pd.read_csv(final_file, header=None).values[0]

    fig = plt.figure(figsize=(12, 12))
    ax = fig.gca()
    ax.axis('off')

    preload_neuron_values_list = preload_neurons(args, save_dir, final_params,
                                                 args.eval_num_timesteps)
    obz_norm, latent_norm, dist_norm = give_normalizers(
        preload_neuron_values_list)
    latent_cmap = plt.get_cmap("Oranges")
    obz_cmap = plt.get_cmap("Blues")
    dist_cmap = plt.get_cmap("Greys")

    neuron_values_gen = neuron_values_generator(args, save_dir, final_params,
                                                args.eval_num_timesteps)

    left, right, bottom, top = 0.1, 0.9, 0.1, 0.9
    result_artists = []

    def init():
        try:
            first_neurons = neuron_values_gen.__next__()
        except StopIteration:
            return
        layer_sizes = [layer.shape[1] for layer in first_neurons]
        first_neurons = np.array(
            [neuron_value.reshape(-1) for neuron_value in first_neurons])

        v_spacing = (top - bottom) / float(max(layer_sizes))
        h_spacing = (right - left) / float(len(layer_sizes) - 1)
        # Nodes

        for n, neuron_layer_value in enumerate(first_neurons):
            neuron_layer_value = neuron_layer_value.reshape(-1)
            layer_size = len(neuron_layer_value)
            layer_top = v_spacing * (layer_size - 1) / 2. + (top + bottom) / 2.
            for m, neuron_value in enumerate(neuron_layer_value):
                if n == 0:
                    # obz
                    circle = plt.Circle(
                        (n * h_spacing + left, layer_top - m * v_spacing),
                        v_spacing / 4.,
                        color=obz_cmap(obz_norm(neuron_value)),
                        ec='k',
                        zorder=4)
                elif n >= len(first_neurons) - 2:
                    # dist
                    circle = plt.Circle(
                        (n * h_spacing + left, layer_top - m * v_spacing),
                        v_spacing / 4.,
                        color=dist_cmap(dist_norm(neuron_value)),
                        ec='k',
                        zorder=4)
                else:
                    #latent
                    circle = plt.Circle(
                        (n * h_spacing + left, layer_top - m * v_spacing),
                        v_spacing / 4.,
                        color=latent_cmap(latent_norm(neuron_value)),
                        ec='k',
                        zorder=4)
                ax.add_artist(circle)
                result_artists.append(circle)
        return result_artists

    def update_neuron(neuron_values):
        num_of_obz_neurons = neuron_values[0].reshape(-1).shape[0]
        num_of_dist_neurons = np.concatenate(neuron_values[-2:],
                                             axis=1).shape[1]

        neuron_values = np.concatenate(neuron_values,
                                       axis=1).reshape(-1).ravel()
        for i, neuron_value in enumerate(neuron_values):
            if i < num_of_obz_neurons:
                # obz
                result_artists[i].set_color(obz_cmap(obz_norm(neuron_value)))

            elif i >= neuron_values.shape[0] - num_of_dist_neurons:
                # dist
                result_artists[i].set_color(dist_cmap(dist_norm(neuron_value)))
            else:
                #latent
                result_artists[i].set_color(
                    latent_cmap(latent_norm(neuron_value)))

        # plt.draw()
        return result_artists

    rot_animation = FuncAnimation(fig,
                                  update_neuron,
                                  frames=neuron_values_gen,
                                  init_func=init,
                                  interval=3)
    plt.show()

    print(f"~~~~~~~~~~~~~~~~~~~~~~saving to {plot_dir_alg}/neuron_vis.pdf")
    file_path = f"{plot_dir_alg}/neuron_firing.gif"
    if os.path.isfile(file_path):
        os.remove(file_path)
    rot_animation.save(file_path, dpi=80, writer='imagemagick')
示例#12
0
def main():

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    args, cma_unknown_args = common_arg_parser.parse_known_args()

    this_run_dir = get_dir_path_for_this_run(args)
    plot_dir_alg = get_plot_dir(args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(plot_dir_alg):
        os.makedirs(plot_dir_alg)

    final_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "pi_final")
    final_params = pd.read_csv(final_file, header=None).values[0]

    def make_env():
        env_out = gym.make(args.env)
        env_out = bench.Monitor(env_out,
                                logger.get_dir(),
                                allow_early_resets=True)

        return env_out

    env = DummyVecEnv([make_env])

    # env_out = gym.make(args.env)
    # env_out = bench.Monitor(env_out, logger.get_dir(), allow_early_resets=True)
    if args.normalize:
        env = VecNormalize(env)
    # policy = MlpPolicy
    model = PPO2.load(f"{save_dir}/ppo2")  # this also loads V function
    # model = PPO2(policy=policy, env=env, n_steps=args.n_steps, nminibatches=args.nminibatches, lam=0.95, gamma=0.99, noptepochs=10,
    #              ent_coef=0.0, learning_rate=3e-4, cliprange=0.2, optimizer=args.optimizer)
    model.set_pi_from_flat(final_params)

    if args.normalize:
        env.load_running_average(save_dir)

    sk = env.venv.envs[0].env.env.robot_skeleton
    lagrangian_values = {}

    obs = np.zeros((env.num_envs, ) + env.observation_space.shape)

    obs[:] = env.reset()

    # env = VecVideoRecorder(env, "./",
    #                            record_video_trigger=lambda x: x == 0, video_length=3000,
    #                            name_prefix="3000000agent-{}".format(args.env))

    lagrangian_values["M"] = [sk.M.reshape((-1, 1))]
    lagrangian_values["COM"] = [sk.C.reshape((-1, 1))]
    lagrangian_values["Coriolis"] = [sk.c.reshape((-1, 1))]
    lagrangian_values["q"] = [sk.q.reshape((-1, 1))]
    lagrangian_values["dq"] = [sk.dq.reshape((-1, 1))]

    contact_values = {}

    neuron_values = model.give_neuron_values(obs)
    layer_values_list = [[neuron_value.reshape((-1, 1))]
                         for neuron_value in neuron_values]

    env.render()
    ep_infos = []
    steps_to_first_done = 0
    first_done = False
    for _ in range(3000):
        actions = model.step(obs)[0]

        # yield neuron_values
        obs, rew, done, infos = env.step(actions)
        if done and not first_done:
            first_done = True

        if not first_done:
            steps_to_first_done += 1

        neuron_values = model.give_neuron_values(obs)

        for i, layer in enumerate(neuron_values):
            layer_values_list[i].append(layer.reshape((-1, 1)))

        fill_contacts_jac_dict(infos[0]["contacts"],
                               contact_dict=contact_values,
                               neuron_values=neuron_values)

        lagrangian_values["M"].append(sk.M.reshape((-1, 1)))
        lagrangian_values["q"].append(sk.q.reshape((-1, 1)))
        lagrangian_values["dq"].append(sk.dq.reshape((-1, 1)))
        lagrangian_values["COM"].append(sk.C.reshape((-1, 1)))
        lagrangian_values["Coriolis"].append(sk.c.reshape((-1, 1)))

        env.render()

        # time.sleep(1)
        for info in infos:
            maybe_ep_info = info.get('episode')
            if maybe_ep_info is not None:
                ep_infos.append(maybe_ep_info)

        # env.render()
        done = done.any()
        if done:
            episode_rew = safe_mean([ep_info['r'] for ep_info in ep_infos])
            print(f'episode_rew={episode_rew}')
            obs = env.reset()

    #Hstack into a big matrix
    lagrangian_values["M"] = np.hstack(lagrangian_values["M"])
    lagrangian_values["COM"] = np.hstack(lagrangian_values["COM"])
    lagrangian_values["Coriolis"] = np.hstack(lagrangian_values["Coriolis"])
    lagrangian_values["q"] = np.hstack(lagrangian_values["q"])
    lagrangian_values["dq"] = np.hstack(lagrangian_values["dq"])

    for contact_body_name, l in contact_values.items():
        body_contact_dict = contact_values[contact_body_name]
        for name, l in body_contact_dict.items():
            body_contact_dict[name] = np.hstack(body_contact_dict[name])

    layer_values_list = [
        np.hstack(layer_list) for layer_list in layer_values_list
    ][1:-2]  # drop variance

    # plt.scatter(lagrangian_values["M"][15], layer_values_list[1][2])
    # plt.scatter(lagrangian_values["M"][11], layer_values_list[0][63])
    out_dir = f"/home/panda-linux/PycharmProjects/low_dim_update_dart/low_dim_update_stable/neuron_vis/plots_{args.env}_{args.num_timesteps}"
    if os.path.exists(out_dir):
        shutil.rmtree(out_dir)
    os.makedirs(out_dir)

    all_weights = model.get_all_weight_values()

    for ind, weights in enumerate(all_weights):
        fname = f"{out_dir}/weights_layer_{ind}.txt"
        np.savetxt(fname, weights)

    PLOT_CUTOFF = steps_to_first_done
    plot_everything(lagrangian_values, layer_values_list, out_dir, PLOT_CUTOFF)
    scatter_the_linear_significant_ones(lagrangian_values,
                                        layer_values_list,
                                        threshold=0.6,
                                        out_dir=out_dir)
    scatter_the_nonlinear_significant_but_not_linear_ones(
        lagrangian_values,
        layer_values_list,
        linear_threshold=0.3,
        nonlinear_threshold=0.6,
        out_dir=out_dir)
    #
    # contact_dicts = {}
    # for contact_body_name, l in contact_values.items():
    #     body_contact_dict = contact_values[contact_body_name]
    #
    #
    #     contact_dicts[contact_body_name] = {}
    #
    #     build_dict = contact_dicts[contact_body_name]
    #
    #     build_dict["body"] = {}
    #     build_dict["layer"] = {}
    #     for name, l in body_contact_dict.items():
    #         for i in range(len(l)):
    #
    #             if name == contact_body_name:
    #                 build_dict["body"][f"{contact_body_name}_{i}"] = l[i]
    #             else:
    #                 build_dict["layer"][f"layer_{name}_neuron_{i}"] = l[i]
    #
    #     body_contact_df = pd.DataFrame.from_dict(build_dict["body"], "index")
    #     layer_contact_df = pd.DataFrame.from_dict(build_dict["layer"], "index")

    # body_contact_df.to_csv(f"{data_dir}/{contact_body_name}_contact.txt", sep='\t')
    # layer_contact_df.to_csv(f"{data_dir}/{contact_body_name}_layers.txt", sep='\t')

    # #TO CSV format
    # data_dir = f"/home/panda-linux/PycharmProjects/low_dim_update_dart/mictools/examples/neuron_vis_data{args.env}_time_steps_{args.num_timesteps}"
    # if os.path.exists(data_dir):
    #     shutil.rmtree(data_dir)
    #
    # os.makedirs(data_dir)
    #
    # for contact_body_name, d in contact_dicts.items():
    #
    #     build_dict = d
    #
    #     body_contact_df = pd.DataFrame.from_dict(build_dict["body"], "index")
    #     layer_contact_df = pd.DataFrame.from_dict(build_dict["layer"], "index")
    #
    #     body_contact_df.to_csv(f"{data_dir}/{contact_body_name}_contact.txt", sep='\t')
    #     layer_contact_df.to_csv(f"{data_dir}/{contact_body_name}_layers.txt", sep='\t')
    #
    #
    #
    # neurons_dict = {}
    # for layer_index in range(len(layer_values_list)):
    #     for neuron_index in range(len(layer_values_list[layer_index])):
    #         neurons_dict[f"layer_{layer_index}_neuron_{neuron_index}"] = layer_values_list[layer_index][neuron_index]
    #
    # for i in range(len(lagrangian_values["COM"])):
    #     neurons_dict[f"COM_index_{i}"] = lagrangian_values["COM"][i]
    #
    # neuron_df = pd.DataFrame.from_dict(neurons_dict, "index")
    #
    #
    #
    # lagrangian_dict = {}
    # for k,v in lagrangian_values.items():
    #     for i in range(len(v)):
    #         lagrangian_dict[f"{k}_index_{i}"] = v[i]
    #
    # lagrangian_df = pd.DataFrame.from_dict(lagrangian_dict, "index")
    #
    #
    # neuron_df.to_csv(f"{data_dir}/neurons.txt", sep='\t')
    # lagrangian_df.to_csv(f"{data_dir}/lagrangian.txt", sep='\t')

    # cor = {}
    # best_cor = {}
    # cor["M"] = get_correlations(lagrangian_values["M"], layer_values_list)
    # best_cor["M"] = [np.max(np.abs(cor_m)) for cor_m in cor["M"]]
    #
    #
    # cor["COM"] = get_correlations(lagrangian_values["COM"], layer_values_list)
    # best_cor["COM"] = [np.max(np.abs(cor_m)) for cor_m in cor["COM"]]
    #
    # cor["Coriolis"] = get_correlations(lagrangian_values["Coriolis"], layer_values_list)
    # best_cor["Coriolis"] = [np.max(np.abs(cor_m)) for cor_m in cor["Coriolis"]]
    # best_cor["Coriolis_argmax"] = [np.argmax(np.abs(cor_m)) for cor_m in cor["Coriolis"]]
    #
    #
    #
    #
    # ncor = {}
    # nbest_cor = {}
    # ncor["M"] = get_normalized_correlations(lagrangian_values["M"], layer_values_list)
    # nbest_cor["M"] = [np.max(np.abs(cor_m)) for cor_m in ncor["M"]]
    #
    #
    # ncor["COM"] = get_normalized_correlations(lagrangian_values["COM"], layer_values_list)
    # nbest_cor["COM"] = [np.max(np.abs(cor_m)) for cor_m in ncor["COM"]]
    #
    # ncor["Coriolis"] = get_normalized_correlations(lagrangian_values["Coriolis"], layer_values_list)
    # nbest_cor["Coriolis"] = [np.max(np.abs(cor_m)) for cor_m in ncor["Coriolis"]]
    # nbest_cor["Coriolis_argmax"] = [np.argmax(np.abs(cor_m)) for cor_m in ncor["Coriolis"]]
    #
    #
    #
    #
    #
    # lin_reg = {"perm_1":{}, "perm_2":{}}
    # best_lin_reg = {"perm_1":{}, "perm_2":{}}
    # lin_reg["perm_1"]["M"], best_lin_reg["perm_1"]["M"] = get_results("M", lagrangian_values, layer_values_list, perm_num=1)
    # lin_reg["perm_2"]["M"], best_lin_reg["perm_2"]["M"] = get_results("M", lagrangian_values, layer_values_list, perm_num=2)
    # lin_reg["perm_1"]["COM"], best_lin_reg["perm_1"]["COM"] = get_results("COM", lagrangian_values, layer_values_list, perm_num=1)
    # lin_reg["perm_2"]["COM"], best_lin_reg["perm_2"]["COM"] = get_results("COM", lagrangian_values, layer_values_list, perm_num=2)

    #
    #
    # lin_reg_1["M"] = get_linear_regressions_1_perm(lagrangian_values["M"], layer_values_list)
    # lin_reg_2["M"] = get_linear_regressions_2_perm(lagrangian_values["M"], layer_values_list)
    # best_lin_reg_2["M"] = []
    # for lin_l in lin_reg_2["M"]:
    #     if lin_l == []:
    #         best_lin_reg_2["M"].append([])
    #     else:
    #         best_lin_reg_2["M"].append(lin_l[np.argmin(lin_l[:,0])])
    #
    # best_lin_reg_1["M"] = []
    # for lin_l in lin_reg_1["M"]:
    #     if lin_l == []:
    #         best_lin_reg_1["M"].append([])
    #     else:
    #         best_lin_reg_1["M"].append(lin_l[np.argmin(lin_l[:,0])])
    # best_lin_reg_1["M"] = np.array(best_lin_reg_1["M"])
    # best_lin_reg_2["M"] = np.array(best_lin_reg_2["M"])
    #
    #
    # lin_reg_1["M"].dump("lin_reg_1_M.txt")
    # lin_reg_2["M"].dump("lin_reg_2_M.txt")
    # best_lin_reg_1["M"].dump("best_lin_reg_1_M.txt")
    # best_lin_reg_2["M"].dump("best_lin_reg_2_M.txt")
    #
    # lin_reg_1["COM"] = get_linear_regressions_1_perm(lagrangian_values["COM"], layer_values_list)
    # lin_reg_2["COM"] = get_linear_regressions_2_perm(lagrangian_values["COM"], layer_values_list)
    # best_lin_reg_2["COM"] = []
    # for lin_l in lin_reg_2["COM"]:
    #     if lin_l == []:
    #         best_lin_reg_2["COM"].append([])
    #     else:
    #         best_lin_reg_2["COM"].append(lin_l[np.argmin(lin_l[:, 0])])
    #
    # best_lin_reg_1["COM"] = []
    # for lin_l in lin_reg_1["COM"]:
    #     if lin_l == []:
    #         best_lin_reg_1["COM"].append([])
    #     else:
    #         best_lin_reg_1["COM"].append(lin_l[np.argmin(lin_l[:, 0])])
    #
    #
    # best_lin_reg_1["COM"] = np.array(best_lin_reg_1["M"])
    # best_lin_reg_2["COM"] = np.array(best_lin_reg_2["M"])
    # lin_reg_1["COM"].dump("lin_reg_1_COM.txt")
    # lin_reg_2["COM"].dump("lin_reg_2_COM.txt")
    # best_lin_reg_1["COM"].dump("best_lin_reg_1_COM.txt")
    # best_lin_reg_2["COM"].dump("best_lin_reg_2_COM.txt")

    pass
示例#13
0
def do_ppos(ppos_args, result, intermediate_data_dir, origin_param):

    ppos_args.alg = "ppo_subspace"

    logger.log(f"#######TRAIN: {ppos_args}")
    this_run_dir = get_dir_path_for_this_run(ppos_args)
    if os.path.exists(this_run_dir):
        import shutil
        shutil.rmtree(this_run_dir)
    os.makedirs(this_run_dir)

    log_dir = get_log_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)
    full_param_traj_dir_path = get_full_params_dir(this_run_dir)
    if os.path.exists(full_param_traj_dir_path):
        import shutil
        shutil.rmtree(full_param_traj_dir_path)
    os.makedirs(full_param_traj_dir_path)

    if os.path.exists(save_dir):
        import shutil
        shutil.rmtree(save_dir)
    os.makedirs(save_dir)

    run_info = {"full_param_traj_dir_path": full_param_traj_dir_path}

    logger.configure(log_dir)

    tic = time.time()

    def make_env():
        env_out = gym.make(ppos_args.env)
        env_out.env.disableViewer = True
        env_out.env.visualize = False

        env_out = bench.Monitor(env_out,
                                logger.get_dir(),
                                allow_early_resets=True)
        return env_out

    env = DummyVecEnv([make_env])
    if ppos_args.normalize:
        env = VecNormalize(env)

    set_global_seeds(ppos_args.seed)
    policy = MlpMultPolicy

    model = PPO2(policy=policy,
                 env=env,
                 n_steps=ppos_args.n_steps,
                 nminibatches=ppos_args.nminibatches,
                 lam=0.95,
                 gamma=0.99,
                 noptepochs=10,
                 ent_coef=0.0,
                 learning_rate=3e-4,
                 cliprange=0.2,
                 policy_kwargs={"num_comp": len(result["first_n_pcs"])},
                 pcs=result["first_n_pcs"],
                 origin_theta=origin_param)
    model.tell_run_info(run_info)

    eprews, optimization_path = model.learn(
        total_timesteps=ppos_args.ppos_num_timesteps,
        give_optimization_path=True)

    toc = time.time()
    logger.log(
        f"####################################PPOS took {toc-tic} seconds")

    moving_ave_rewards = get_moving_aves(eprews, 100)

    return eprews, moving_ave_rewards, optimization_path
示例#14
0
def main():

    import sys
    logger.log(sys.argv)
    ppos_arg_parser = get_common_parser()

    ppos_args, ppos_unknown_args = ppos_arg_parser.parse_known_args()
    full_space_alg = ppos_args.alg

    # origin = "final_param"
    origin = ppos_args.origin

    this_run_dir = get_dir_path_for_this_run(ppos_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)

    ppos_run_num, ppos_intermediate_data_dir = generate_run_dir(
        get_ppos_returns_dirname,
        intermediate_dir=intermediate_data_dir,
        n_comp=ppos_args.n_comp_to_use)
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    proj_or_not = (ppos_args.n_comp_to_use == 2)
    result = do_pca(ppos_args.n_components,
                    ppos_args.n_comp_to_use,
                    traj_params_dir_name,
                    intermediate_data_dir,
                    proj=proj_or_not,
                    origin=origin,
                    use_IPCA=ppos_args.use_IPCA,
                    chunk_size=ppos_args.chunk_size)
    '''
    ==========================================================================================
    eval all xy coords
    ==========================================================================================
    '''

    if origin == "final_param":
        origin_param = result["final_concat_params"]
    else:
        origin_param = result["mean_param"]

    final_param = result["final_concat_params"]
    last_proj_coord = do_proj_on_first_n(final_param, result["first_n_pcs"],
                                         origin_param)

    if origin == "final_param":
        back_final_param = low_dim_to_old_basis(last_proj_coord,
                                                result["first_n_pcs"],
                                                origin_param)
        assert np.testing.assert_almost_equal(back_final_param, final_param)

    starting_coord = last_proj_coord
    logger.log(f"PPOS STASRTING CORRD: {starting_coord}")

    # starting_coord = (1/2*np.max(xcoordinates_to_eval), 1/2*np.max(ycoordinates_to_eval)) # use mean
    assert result["first_n_pcs"].shape[0] == ppos_args.n_comp_to_use

    eprews, moving_ave_rewards, optimization_path = do_ppos(
        ppos_args, result, intermediate_data_dir, origin_param)

    ppos_args.alg = full_space_alg
    plot_dir = get_plot_dir(ppos_args)
    ppos_plot_dir = get_ppos_plot_dir(plot_dir, ppos_args.n_comp_to_use,
                                      ppos_run_num)
    if not os.path.exists(ppos_plot_dir):
        os.makedirs(ppos_plot_dir)

    ret_plot_name = f"cma return on {ppos_args.n_comp_to_use} dim space of real pca plane, " \
                    f"explained {np.sum(result['explained_variance_ratio'][:ppos_args.n_comp_to_use])}"
    plot_ppos_returns(ppos_plot_dir,
                      ret_plot_name,
                      moving_ave_rewards,
                      show=False)

    if ppos_args.n_comp_to_use == 2:
        proj_coords = result["proj_coords"]
        assert proj_coords.shape[1] == 2

        xcoordinates_to_eval, ycoordinates_to_eval = gen_subspace_coords(
            ppos_args,
            np.vstack((proj_coords, optimization_path)).T)

        eval_returns = do_eval_returns(ppos_args,
                                       intermediate_data_dir,
                                       result["first_n_pcs"],
                                       origin_param,
                                       xcoordinates_to_eval,
                                       ycoordinates_to_eval,
                                       save_dir,
                                       pca_center=origin)

        plot_contour_trajectory(ppos_plot_dir,
                                "end_point_origin_eval_return_contour_plot",
                                xcoordinates_to_eval,
                                ycoordinates_to_eval,
                                eval_returns,
                                proj_coords[:, 0],
                                proj_coords[:, 1],
                                result["explained_variance_ratio"][:2],
                                num_levels=25,
                                show=False,
                                sub_alg_path=optimization_path)

    opt_mean_path_in_old_basis = [
        low_dim_to_old_basis(projected_opt_params, result["first_n_pcs"],
                             origin_param)
        for projected_opt_params in optimization_path
    ]
    distance_to_final = [
        LA.norm(opt_mean - final_param, ord=2)
        for opt_mean in opt_mean_path_in_old_basis
    ]
    distance_to_final_plot_name = f"distance_to_final over generations "
    plot_2d(ppos_plot_dir, distance_to_final_plot_name,
            np.arange(len(distance_to_final)), distance_to_final,
            "num generation", "distance_to_final", False)
示例#15
0
def eval_trained_policy_and_collect_data(eval_seed, eval_run_num, policy_env, policy_num_timesteps, policy_seed, policy_run_num, additional_note):


    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    args, cma_unknown_args = common_arg_parser.parse_known_args()
    args.env = policy_env
    args.seed = policy_seed
    args.num_timesteps = policy_num_timesteps
    args.run_num = policy_run_num
    this_run_dir = get_dir_path_for_this_run(args)
    traj_params_dir_name = get_full_params_dir(this_run_dir)
    save_dir = get_save_dir( this_run_dir)



    final_file = get_full_param_traj_file_path(traj_params_dir_name, "pi_final")
    final_params = pd.read_csv(final_file, header=None).values[0]


    def make_env():
        env_out = gym.make(args.env)
        env_out = bench.Monitor(env_out, logger.get_dir(), allow_early_resets=True)
        env_out.seed(eval_seed)
        return env_out
    env = DummyVecEnv([make_env])
    running_env = env.envs[0].env.env


    set_global_seeds(eval_seed)
    running_env.seed(eval_seed)

    if args.normalize:
        env = VecNormalize(env)

    model = PPO2.load(f"{save_dir}/ppo2", seed=eval_seed)
    model.set_pi_from_flat(final_params)
    if args.normalize:
        env.load_running_average(save_dir)

    # is it necessary?
    running_env = env.venv.envs[0].env.env


    lagrangian_values = {}

    obs = np.zeros((env.num_envs,) + env.observation_space.shape)

    obs[:] = env.reset()

    # env = VecVideoRecorder(env, "./",
    #                            record_video_trigger=lambda x: x == 0, video_length=3000,
    #                            name_prefix="3000000agent-{}".format(args.env))

    #init lagrangian values
    for lagrangian_key in lagrangian_keys:
        flat_array = running_env.get_lagrangian_flat_array(lagrangian_key)
        lagrangian_values[lagrangian_key] = [flat_array]


    neuron_values = model.give_neuron_values(obs)
    raw_layer_values_list = [[neuron_value.reshape((-1,1))] for neuron_value in neuron_values]

    # env.render()
    ep_infos = []
    steps_to_first_done = 0
    first_done = False
    for _ in range(30000):
        actions = model.step(obs)[0]

        # yield neuron_values
        obs, rew, done, infos = env.step(actions)
        if done and not first_done:
            first_done = True

        if not first_done:
            steps_to_first_done += 1


        neuron_values = model.give_neuron_values(obs)


        for i, layer in enumerate(neuron_values):
            raw_layer_values_list[i].append(layer.reshape((-1,1)))

        # fill_contacts_jac_dict(infos[0]["contacts"], contact_dict=contact_values, neuron_values=neuron_values)

        # filling lagrangian values
        for lagrangian_key in lagrangian_keys:
            flat_array = running_env.get_lagrangian_flat_array(lagrangian_key)
            lagrangian_values[lagrangian_key].append(flat_array)

        # env.render()

        # time.sleep(1)
        for info in infos:
            maybe_ep_info = info.get('episode')
            if maybe_ep_info is not None:
                ep_infos.append(maybe_ep_info)

        # env.render()
        done = done.any()
        if done:
            episode_rew = safe_mean([ep_info['r'] for ep_info in ep_infos])
            print(f'episode_rew={episode_rew}')
            obs = env.reset()


    #Hstack into a big matrix
    for lagrangian_key in lagrangian_keys:
        lagrangian_values[lagrangian_key] = np.hstack(lagrangian_values[lagrangian_key])

    # for contact_body_name, l in contact_values.items():
    #     body_contact_dict = contact_values[contact_body_name]
    #     for name, l in body_contact_dict.items():
    #         body_contact_dict[name] = np.hstack(body_contact_dict[name])
    input_values = np.hstack(raw_layer_values_list[0])

    layers_values = [np.hstack(layer_list) for layer_list in raw_layer_values_list][1:-2]# drop variance and inputs


    data_dir = get_data_dir(policy_env=args.env, policy_num_timesteps=policy_num_timesteps, policy_run_num=policy_run_num
                            , policy_seed=policy_seed, eval_seed=eval_seed, eval_run_num=eval_run_num, additional_note=additional_note)
    if os.path.exists(data_dir):
        shutil.rmtree(data_dir)
    os.makedirs(data_dir)


    lagrangian_values_fn = f"{data_dir}/lagrangian.pickle"

    with open(lagrangian_values_fn, 'wb') as handle:
        pickle.dump(lagrangian_values, handle, protocol=pickle.HIGHEST_PROTOCOL)

    input_values_fn = f"{data_dir}/input_values.npy"
    layers_values_fn = f"{data_dir}/layer_values.npy"

    np.save(input_values_fn, input_values)
    np.save(layers_values_fn, layers_values)


    all_weights = model.get_all_weight_values()

    for ind, weights in enumerate(all_weights):
        fname = f"{data_dir}/weights_layer_{ind}.txt"
        np.savetxt(fname, weights)