示例#1
0
def stain_norm(std_img, f_p, dst):

    standardizer = staintools.BrightnessStandardizer()
    i_std = staintools.read_image(std_img)
    stain_normalizer = staintools.StainNormalizer(method='vahadane')
    i_standard = standardizer.transform(i_std)
    stain_normalizer.fit(i_standard)
    os.makedirs(dst, exist_ok=True)
    for f in os.listdir(f_p):
        img = staintools.read_image(os.path.join(f_p, f))
        i_normalized = stain_normalizer.transform(standardizer.transform(img))
        cv2.imwrite(os.path.join(dst, os.path.basename(f)), i_normalized)
示例#2
0
def transform(image, target_im):
    # Read data
    target = staintools.read_image(image)
    to_transform = staintools.read_image(target_im)

    # Standardize brightness (This step is optional but can improve the tissue mask calculation)
    standardizer = staintools.BrightnessStandardizer()
    target = standardizer.transform(target)
    to_transform = standardizer.transform(to_transform)

    # Stain normalize
    normalizer = staintools.StainNormalizer(method='vahadane')
    normalizer.fit(target)
    transformed = normalizer.transform(to_transform)
    return transformed
示例#3
0
    return (cropped_img, cropped_mask, index)


crop_size2 = [224, 224]
i = 0
while i < len(tumor_paths):
    tumor_path = tumor_paths[i]
    mask_path = osp.join(
        mask_paths, osp.basename(tumor_paths[i].replace('.png', '_mask.png')))
    #image = plt.imread(tumor_path)
    imgmask = io.imread(mask_path)

    stain_normalizer = staintools.StainNormalizer(method='vahadane')
    imagest = staintools.read_image("/home/wli/Downloads/test/tumor_st.png")
    img = staintools.read_image(tumor_path)
    standardizer = staintools.BrightnessStandardizer()
    imagest_standard = standardizer.transform(imagest)
    img_standard = standardizer.transform(img)
    stain_normalizer.fit(imagest_standard)
    img_norm = stain_normalizer.transform(img_standard)

    imageroted1 = i1_flip = np.fliplr(img_norm)
    maskroted1 = i1_flip = np.fliplr(imgmask)

    imageroted2 = np.rot90(img_norm, 1)
    imageroted3 = np.rot90(img_norm, 2)
    imageroted4 = np.rot90(img_norm, 3)

    maskroted2 = np.rot90(imgmask, 1)
    maskroted3 = np.rot90(imgmask, 2)
    maskroted4 = np.rot90(imgmask, 3)
示例#4
0
    def __init__(self,
                 data_path,
                 transform_args,
                 metadata_csv,
                 split,
                 num_classes=2,
                 resize_shape=(DEFAULT_PATCH_SIZE, DEFAULT_PATCH_SIZE),
                 max_patches=None,
                 tasks_to='tcga',
                 is_training=False,
                 filtered=True,
                 toy=False,
                 normalize=False,
                 transform=None):
        """Initialize TCGADataset.

        data directory to be organized as follows:
            data_path
                slide_list.pkl
                train.hdf5
                val.hdf5
                test.hdf5
                metadata.csv

        Args:
            data_path (str): path to data directory
            transform_args (args): arguments to transform data
            metadata_csv (str): path to csv containing metadata information of the dataset
            split (str): either "train", "valid", or "test"
            num_classes (int): number of unique labels
            resize_shape (tuple): shape to resize the inputs to
            max_patches (int): max number of patches to obtain for each slide
            tasks_to (str): corresponds to a task sequence
            is_training (bool): whether the model in in training mode or not
            filtered (bool): whether to filter the images
        """
        #        if split not in ["train", "valid", "test"]:
        #            raise ValueError("Invalid value for split. Must specify train, valid, or test.")

        super().__init__(data_path, transform_args, split, is_training, 'tcga',
                         tasks_to)
        self.data_path = data_path
        #        self.slide_list_path = os.path.join(self.data_path, SLIDE_PKL_FILE)
        self.hdf5_path = os.path.join(self.data_path, "{}.hdf5".format(split))

        #hdf5_fh = h5py.File(self.hdf5_path, "r")
        #if split == "demo":
        #    s = "TCGA-W5-AA2Z-01Z-00-DX1.49AB7E33-EE0C-42DE-9EDE-91E01290BE45.svs"
        #    print("hdf5 test!")
        #    print("slide: {}".format(s))
        #    print("patch 0: {}".format(self.hdf5_fh[s][0, 0, 0, 0]))
        #    print("patch 1: {}".format(self.hdf5_fh[s][1, 0, 0, 0]))

        self.split = split
        self.is_training = is_training
        self.metadata_path = os.path.join(self.data_dir, metadata_csv)
        print("metadata_path: {}".format(self.metadata_path))
        self.metadata = pd.read_csv(self.metadata_path)
        print("hdf5 path: {}".format(self.hdf5_path))

        self.toy = True

        self.filtered = filtered
        #        with open(self.slide_list_path, "rb") as pkl_fh:
        #            self.slide_list = pickle.load(pkl_fh)
        with h5py.File(self.hdf5_path, "r") as db:
            self.valid_slides = [slide_id for slide_id in db]

        self.slide_list = self.metadata[COL_TCGA_SLIDE_ID]

        print("Num valid slides {}".format(len(self.valid_slides)))

        self.num_classes = num_classes

        self.resize_shape = resize_shape
        self.max_patches_per_slide = max_patches

        self.patch_list = self._get_patch_list()
        print("Patch list shape: {}".format(self.patch_list.shape))

        self.label_dict = self._get_label_dict(tasks_to)

        self.labels = self._get_labels()
        self._set_class_weights(self.labels)
        self.transform = transform
        self.normalize = normalize
        # tools for patch normalization
        self.standardizer = staintools.BrightnessStandardizer()
        self.color_normalizer = staintools.ReinhardColorNormalizer()
        self.normalizer_with_constants = transforms.Compose(
            [transforms.Normalize(mean=TCGA_MEAN, std=TCGA_STD)])
        self.ToTensor = transforms.Compose([transforms.ToTensor()])
        # tools for image augmentation
        self.stain_augmentor = staintools.StainAugmentor(method='vahadane',
                                                         sigma1=0.2,
                                                         sigma2=0.2)