7) run_applyFeatureExistance.py ''' modelfile = path + '/models/modelDict_%d.model'%numberFE trainAveragesFile = path+'/models/trainAverages_%d.model'%numberFE applyFE(path, modelfile, trainAveragesFile, 20000000000) ''' 8) run_applySentimentMF.py ''' applySMF(path, 50000) ''' 9) run_applyAggregationModel.py ''' applyAM(path,numberAM,200000) ''' 10) run_learnMF.py ''' learnMF(path, 20000) ''' 11) run_applyMF.py ''' applyMF(path, 4255) ''' 12) run_evaluation.py ''' evaluate(path)
from standartAlgorithms.applyMatrixFactorization import applyMF from params.params import path if __name__ == '__main__': logger = logging.getLogger('signature') logfile = '../../data/log/%d_learnSMF.log'%int(time.time()) logging.basicConfig(filename = logfile, format='%(asctime)s : %(name)-12s: %(levelname)s : %(message)s') logging.root.setLevel(level=logging.DEBUG) logger.info("running %s" % ' '.join(sys.argv)) console = logging.StreamHandler() console.setLevel(logging.DEBUG) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s : %(name)-12s: %(levelname)-8s %(message)s') # tell the handler to use this format console.setFormatter(formatter) logger.addHandler(console) ''' 10) run_learnMF.py ''' numberMF = learnMF(path, 200000000) #numberMF = 46192 ''' 11) run_applyMF.py ''' applyMF(path, numberMF)