def correlation_brain_image(outside_brain_value): """ Uses a mask to plot only the areas that are the brain itself and saves that image into the figures folder. Parameters ---------- outside_brain_values : int Returns ------- None """ if outside_brain_value < 0: title = 'light' else: title = 'dark' correlations_3d = np.reshape( get_correlations('mean', nan=False), VOXEL_DIMENSIONS) image = correlations_3d[:, :, 24] image += image.min() outside_brain_mask = np.logical_not(bm.get_brain_mask())[:, :, 24] image[outside_brain_mask] = outside_brain_value hot_mask = image >= np.percentile(get_correlations('mean', nan=True), 95) hot_pixels = np.zeros_like(image, dtype=np.float) hot_pixels[hot_mask] = image[hot_mask] hot_pixels[~hot_mask] = np.nan plt.imshow(image, interpolation='nearest', cmap='gray') plt.imshow(hot_pixels, interpolation='nearest', cmap='Blues') plot_path = '{0}/figures/correlated_brain_{1}.png'.format(REPO_HOME_PATH, title) plt.savefig(plot_path) print('Saved {0}'.format(plot_path))
def correlation_brain_image(outside_brain_value): """ Uses a mask to plot only the areas that are the brain itself and saves that image into the figures folder. Parameters ---------- outside_brain_values : int Returns ------- None """ if outside_brain_value < 0: title = 'light' else: title = 'dark' correlations_3d = np.reshape(get_correlations('mean', nan=False), VOXEL_DIMENSIONS) image = correlations_3d[:, :, 24] image += image.min() outside_brain_mask = np.logical_not(bm.get_brain_mask())[:, :, 24] image[outside_brain_mask] = outside_brain_value hot_mask = image >= np.percentile(get_correlations('mean', nan=True), 95) hot_pixels = np.zeros_like(image, dtype=np.float) hot_pixels[hot_mask] = image[hot_mask] hot_pixels[~hot_mask] = np.nan plt.imshow(image, interpolation='nearest', cmap='gray') plt.imshow(hot_pixels, interpolation='nearest', cmap='Blues') plot_path = '{0}/figures/correlated_brain_{1}.png'.format( REPO_HOME_PATH, title) plt.savefig(plot_path) print('Saved {0}'.format(plot_path))
def get_pairwise_correlations(only_brain = True): """ Finds and returns the paths to the correlations of all possible pairs of subjects (if the paths exist) Parameters ---------- None Returns ------- paths : string array """ subject_pairs = itertools.combinations(SUBJECTS, 2) brain_mask = np.ravel(bm.get_brain_mask()) correlations = [np.load(dp.get_correlation_path(subj_a, subj_b)) for subj_a, subj_b in subject_pairs] if only_brain: return [c[brain_mask] for c in correlations] return correlations
def get_pairwise_correlations(only_brain=True): """ Finds and returns the paths to the correlations of all possible pairs of subjects (if the paths exist) Parameters ---------- None Returns ------- paths : string array """ subject_pairs = itertools.combinations(SUBJECTS, 2) brain_mask = np.ravel(bm.get_brain_mask()) correlations = [ np.load(dp.get_correlation_path(subj_a, subj_b)) for subj_a, subj_b in subject_pairs ] if only_brain: return [c[brain_mask] for c in correlations] return correlations