def main():
    tf.random.set_seed(0)
    np.random.seed(0)
    colorama.init(autoreset=True)
    np.set_printoptions(linewidth=200, precision=3, suppress=True)
    parser = argparse.ArgumentParser()
    parser.add_argument("dataset_dirs", type=pathlib.Path, nargs="+")
    parser.add_argument("checkpoint", type=pathlib.Path)
    parser.add_argument("--mode",
                        type=str,
                        choices=['train', 'val', 'test'],
                        default='val')

    args = parser.parse_args()

    # TODO: REMOVE ME!
    args.mode = 'train'

    rospy.init_node("test_as_inverse_model")

    test_dataset = DynamicsDatasetLoader(args.dataset_dirs)
    test_tf_dataset = test_dataset.get_datasets(mode=args.mode)

    filter_model = filter_utils.load_filter([args.checkpoint])
    latent_dynamics_model, _ = dynamics_utils.load_generic_model(
        [args.checkpoint])

    test_as_inverse_model(filter_model, latent_dynamics_model, test_dataset,
                          test_tf_dataset)
示例#2
0
def main():
    colorama.init(autoreset=True)
    plt.style.use("slides")
    np.set_printoptions(precision=3, suppress=True, linewidth=200)

    parser = argparse.ArgumentParser(formatter_class=my_formatter)
    parser.add_argument("fwd_model_dir",
                        help="load this saved forward model file",
                        type=pathlib.Path,
                        nargs='+')
    parser.add_argument("test_config",
                        help="json file describing the test",
                        type=pathlib.Path)
    parser.add_argument("labeling_params",
                        help='labeling params',
                        type=pathlib.Path)

    args = parser.parse_args()

    rospy.init_node('test_model_from_gazebo')

    test_config = json.load(args.test_config.open("r"))
    labeling_params = json.load(args.labeling_params.open("r"))
    labeling_state_key = labeling_params['state_key']

    # read actions from config
    actions = [numpify(a) for a in test_config['actions']]
    n_actions = len(actions)
    time_steps = np.arange(n_actions + 1)

    fwd_model, _ = dynamics_utils.load_generic_model(args.fwd_model_dir)

    service_provider = GazeboServices()
    service_provider.setup_env(
        verbose=0,
        real_time_rate=0,
        max_step_size=fwd_model.data_collection_params['max_step_size'])
    environment = fwd_model.scenario.get_environment(
        params=fwd_model.data_collection_params)
    start_state = fwd_model.scenario.get_state()
    start_state = make_dict_tf_float32(start_state)
    start_states = [start_state]
    expanded_actions = [[actions]]
    predicted_states = predict(fwd_model, environment, start_states,
                               expanded_actions, n_actions, 1, 1)

    scenario = fwd_model.scenario
    actual_states_lists = execute(service_provider, scenario, start_states,
                                  expanded_actions)

    visualize(scenario, environment, actual_states_lists, actions,
              predicted_states, labeling_state_key, time_steps)
示例#3
0
def load_dataset_and_models(args):
    comparison_info = json.load(args.comparison.open("r"))
    models = {}
    for name, model_info in comparison_info.items():
        model_dir = paths_from_json(model_info['model_dir'])
        model, _ = dynamics_utils.load_generic_model(model_dir)
        models[name] = model

    dataset = DynamicsDatasetLoader(args.dataset_dirs)
    tf_dataset = dataset.get_datasets(mode=args.mode,
                                      shard=args.shard,
                                      take=args.take)
    tf_dataset = batch_tf_dataset(tf_dataset, 1)

    return tf_dataset, dataset, models
def viz_dataset(
    dataset_dirs: List[pathlib.Path],
    checkpoint: pathlib.Path,
    mode: str,
    viz_func: Callable,
    use_gt_rope: bool,
    **kwargs,
):
    test_dataset = DynamicsDatasetLoader(dataset_dirs, use_gt_rope=use_gt_rope)

    test_tf_dataset = test_dataset.get_datasets(mode=mode)
    test_tf_dataset = batch_tf_dataset(test_tf_dataset, 1, drop_remainder=True)

    model, _ = dynamics_utils.load_generic_model([checkpoint])

    for i, batch in enumerate(test_tf_dataset):
        batch.update(test_dataset.batch_metadata)
        outputs, _ = model.from_example(batch, training=False)

        viz_func(batch, outputs, test_dataset, model)
def main():
    colorama.init(autoreset=True)
    parser = argparse.ArgumentParser()
    parser.add_argument("results_dir",
                        type=pathlib.Path,
                        help='dir containing *_metrics.json.gz')
    parser.add_argument("plan_idx", type=int)

    args = parser.parse_args()

    rospy.init_node("postprocess_result")

    with (args.results_dir / 'metadata.json').open('r') as metadata_file:
        metadata_str = metadata_file.read()
        metadata = json.loads(metadata_str)

    planner_params = metadata['planner_params']
    fwd_model_dirs = [pathlib.Path(p) for p in planner_params['fwd_model_dir']]
    fwd_model, _ = dynamics_utils.load_generic_model(fwd_model_dirs)
    scenario = fwd_model.scenario

    classifier_model_dir = pathlib.Path(planner_params['classifier_model_dir'])
    classifier = classifier_utils.load_generic_model(classifier_model_dir,
                                                     scenario=scenario)

    metrics_filename = args.results_dir / f"{args.plan_idx}_metrics.json.gz"
    with gzip.open(metrics_filename, 'rb') as f:
        data_str = f.read()
    datum = json.loads(data_str.decode("utf-8"))
    steps = datum['steps']

    goal = datum['goal']
    first_step = steps[0]
    environment = numpify(first_step['planning_query']['environment'])
    all_output_actions = []
    for step in steps:
        if step['type'] == 'executed_plan':
            actions = postprocess_step(scenario, fwd_model, classifier,
                                       environment, step, goal, planner_params)
            all_output_actions.extend(actions)
        elif step['type'] == 'executed_recovery':
            actions = [step['recovery_action']]
            all_output_actions.extend(actions)

    # viz the whole thing
    start_state = steps[0]['planning_result']['path'][0]
    final_states = fwd_model.propagate(environment, start_state, actions)
    T = len(final_states)
    for t, s_t in enumerate(final_states):
        scenario.plot_state_rviz(s_t,
                                 idx=t,
                                 label='smoothed',
                                 color='#00ff0099')
        if t < T - 1:
            scenario.plot_action_rviz(s_t,
                                      actions[t],
                                      idx=t,
                                      color="#ffffff99",
                                      label='smoothed')
        sleep(0.02)

    # Save the output actions
    outfilename = args.results_dir / f"{args.plan_idx}_smoothed.json"
    with outfilename.open("w") as outfile:
        json.dump(listify(all_output_actions), outfile)

    print(Fore.GREEN + f"Wrote {outfilename}" + Fore.RESET)
示例#6
0
def load_fwd_model(planner_params):
    fwd_model_dirs = paths_from_json(planner_params['fwd_model_dir'])
    fwd_model, _ = dynamics_utils.load_generic_model(fwd_model_dirs)
    return fwd_model
示例#7
0
def make_recovery_dataset_from_params_dict(dataset_dir: pathlib.Path,
                                           fwd_model_dir,
                                           classifier_model_dir: pathlib.Path,
                                           labeling_params: Dict,
                                           outdir: pathlib.Path,
                                           batch_size: int,
                                           use_gt_rope: bool,
                                           start_at: Optional = None,
                                           stop_at: Optional = None):
    # append "best_checkpoint" before loading
    classifier_model_dir = classifier_model_dir / 'best_checkpoint'
    if not isinstance(fwd_model_dir, List):
        fwd_model_dir = [fwd_model_dir]
    fwd_model_dir = [p / 'best_checkpoint' for p in fwd_model_dir]

    np.random.seed(0)
    tf.random.set_seed(0)

    dynamics_hparams = hjson.load((dataset_dir / 'hparams.hjson').open('r'))
    fwd_model, _ = dynamics_utils.load_generic_model(fwd_model_dir)

    dataset = DynamicsDatasetLoader([dataset_dir], use_gt_rope=use_gt_rope)

    outdir.mkdir(exist_ok=True)
    print(Fore.GREEN + f"Making recovery dataset {outdir.as_posix()}")
    new_hparams_filename = outdir / 'hparams.hjson'
    recovery_dataset_hparams = dynamics_hparams

    scenario = fwd_model.scenario
    if not isinstance(classifier_model_dir, List):
        classifier_model_dir = [classifier_model_dir]
    classifier_model = classifier_utils.load_generic_model(
        classifier_model_dir, scenario)

    recovery_dataset_hparams['dataset_dir'] = dataset_dir
    recovery_dataset_hparams['fwd_model_dir'] = fwd_model_dir
    recovery_dataset_hparams['classifier_model'] = classifier_model_dir
    recovery_dataset_hparams['fwd_model_hparams'] = fwd_model.hparams
    recovery_dataset_hparams['labeling_params'] = labeling_params
    recovery_dataset_hparams['state_keys'] = fwd_model.state_keys
    recovery_dataset_hparams['action_keys'] = fwd_model.action_keys
    recovery_dataset_hparams['start-at'] = start_at
    recovery_dataset_hparams['stop-at'] = stop_at
    my_hdump(recovery_dataset_hparams,
             new_hparams_filename.open("w"),
             indent=2)

    outdir.mkdir(parents=True, exist_ok=True)

    start_at = progress_point(start_at)
    stop_at = progress_point(stop_at)

    modes = ['train', 'val', 'test']
    for mode in modes:
        if start_at is not None and modes.index(mode) < modes.index(
                start_at[0]):
            continue
        if stop_at is not None and modes.index(mode) > modes.index(stop_at[0]):
            continue

        tf_dataset_for_mode = dataset.get_datasets(mode=mode)

        full_output_directory = outdir / mode
        full_output_directory.mkdir(parents=True, exist_ok=True)

        # figure out that record_idx to start at
        record_idx = count_up_to_next_record_idx(full_output_directory)

        # FIXME: start_at is not implemented correctly in the sense that it shouldn't be the same
        #  across train/val/test
        for out_example in generate_recovery_examples(
                tf_dataset=tf_dataset_for_mode,
                modes=modes,
                mode=mode,
                fwd_model=fwd_model,
                classifier_model=classifier_model,
                dataset=dataset,
                labeling_params=labeling_params,
                batch_size=batch_size,
                start_at=start_at,
                stop_at=stop_at):
            # FIXME: is there an extra time/batch dimension?
            for batch_idx in range(out_example['traj_idx'].shape[0]):
                out_example_b = index_dict_of_batched_tensors_tf(
                    out_example, batch_idx)

                # # BEGIN DEBUG
                # from link_bot_data.visualization import init_viz_env, recovery_transition_viz_t, init_viz_action
                # from copy import deepcopy
                #
                # viz_out_example_b = deepcopy(out_example_b)
                # recovery_probability = compute_recovery_probabilities(viz_out_example_b['accept_probabilities'],
                #                                                       labeling_params['n_action_samples'])
                # viz_out_example_b['recovery_probability'] = recovery_probability
                # anim = RvizAnimation(scenario=scenario,
                #                      n_time_steps=labeling_params['action_sequence_horizon'],
                #                      init_funcs=[init_viz_env,
                #                                  init_viz_action(dataset.scenario_metadata, fwd_model.action_keys,
                #                                                  fwd_model.state_keys),
                #                                  ],
                #                      t_funcs=[init_viz_env,
                #                               recovery_transition_viz_t(dataset.scenario_metadata,
                #                                                         fwd_model.state_keys),
                #                               lambda s, e, t: scenario.plot_recovery_probability_t(e, t),
                #                               ])
                # anim.play(viz_out_example_b)
                # # END DEBUG

                tf_write_example(full_output_directory, out_example_b,
                                 record_idx)
                record_idx += 1

    return outdir
def test_classifier(classifier_model_dir: pathlib.Path,
                    fwd_model_dir: List[pathlib.Path],
                    n_actions: int,
                    saved_state: Optional[pathlib.Path],
                    generate_actions: Callable):
    fwd_model, _ = dynamics_utils.load_generic_model([pathlib.Path(p) for p in fwd_model_dir])
    classifier: NNClassifierWrapper = classifier_utils.load_generic_model([classifier_model_dir])

    service_provider = GazeboServices()
    service_provider.setup_env(verbose=0,
                               real_time_rate=0,
                               max_step_size=fwd_model.data_collection_params['max_step_size'],
                               play=False)
    if saved_state:
        service_provider.restore_from_bag(saved_state)

    scenario = fwd_model.scenario
    scenario.on_before_get_state_or_execute_action()

    # NOTE: perhaps it would make sense to have a "fwd_model" have API for get_env, get_state, sample_action, etc
    #  because the fwd_model knows it's scenario, and importantly it also knows it's data_collection_params
    #  which is what we're using here to pass to the scenario methods
    params = fwd_model.data_collection_params
    environment = numpify(scenario.get_environment(params))
    start_state = numpify(scenario.get_state())

    start_state_tiled = repeat(start_state, n_actions, axis=0, new_axis=True)
    start_states_tiled = add_time_dim(start_state_tiled)

    actions = generate_actions(environment, start_state_tiled, scenario, params, n_actions)

    environment_tiled = repeat(environment, n_actions, axis=0, new_axis=True)
    actions_dict = sequence_of_dicts_to_dict_of_tensors(actions)
    actions_dict = add_time_dim(actions_dict)
    predictions, _ = fwd_model.propagate_differentiable_batched(environment=environment_tiled,
                                                                state=start_states_tiled,
                                                                actions=actions_dict)

    # Run classifier
    state_sequence_length = 2
    accept_probabilities, _ = classifier.check_constraint_batched_tf(environment=environment_tiled,
                                                                     predictions=predictions,
                                                                     actions=actions_dict,
                                                                     state_sequence_length=state_sequence_length,
                                                                     batch_size=n_actions)
    # animate over the sampled actions
    anim = RvizAnimation(scenario=scenario,
                         n_time_steps=n_actions,
                         init_funcs=[init_viz_env],
                         t_funcs=[
                             lambda s, e, t: init_viz_env(s, e),
                             viz_transition_for_model_t({}, fwd_model),
                             ExperimentScenario.plot_accept_probability_t,
                         ],
                         )
    example = {
        'accept_probability': tf.squeeze(accept_probabilities, axis=1),
    }
    example.update(environment)
    example.update(predictions)
    example.update(actions_dict)
    anim.play(example)
def make_classifier_dataset_from_params_dict(dataset_dir: pathlib.Path,
                                             fwd_model_dir: List[pathlib.Path],
                                             labeling_params: Dict,
                                             outdir: pathlib.Path,
                                             use_gt_rope: bool,
                                             visualize: bool,
                                             take: Optional[int] = None,
                                             batch_size: Optional[int] = None,
                                             start_at: Optional[int] = None,
                                             stop_at: Optional[int] = None):
    # append "best_checkpoint" before loading
    if not isinstance(fwd_model_dir, List):
        fwd_model_dir = [fwd_model_dir]
    fwd_model_dir = [p / 'best_checkpoint' for p in fwd_model_dir]

    dynamics_hparams = hjson.load((dataset_dir / 'hparams.hjson').open('r'))
    fwd_models, _ = dynamics_utils.load_generic_model(fwd_model_dir)

    dataset = DynamicsDatasetLoader([dataset_dir], use_gt_rope=use_gt_rope)

    new_hparams_filename = outdir / 'hparams.hjson'
    classifier_dataset_hparams = dynamics_hparams

    classifier_dataset_hparams['dataset_dir'] = dataset_dir.as_posix()
    classifier_dataset_hparams['fwd_model_hparams'] = fwd_models.hparams
    classifier_dataset_hparams['labeling_params'] = labeling_params
    classifier_dataset_hparams['true_state_keys'] = dataset.state_keys
    classifier_dataset_hparams['predicted_state_keys'] = fwd_models.state_keys
    classifier_dataset_hparams['action_keys'] = dataset.action_keys
    classifier_dataset_hparams['scenario_metadata'] = dataset.hparams[
        'scenario_metadata']
    classifier_dataset_hparams['start-at'] = start_at
    classifier_dataset_hparams['stop-at'] = stop_at
    my_hdump(classifier_dataset_hparams,
             new_hparams_filename.open("w"),
             indent=2)

    # because we're currently making this dataset, we can't call "get_dataset" but we can still use it to visualize
    classifier_dataset_for_viz = ClassifierDatasetLoader(
        [outdir], use_gt_rope=use_gt_rope)

    t0 = perf_counter()
    total_example_idx = 0
    for mode in ['train', 'val', 'test']:
        tf_dataset = dataset.get_datasets(mode=mode, take=take)

        full_output_directory = outdir / mode
        full_output_directory.mkdir(parents=True, exist_ok=True)

        out_examples_gen = generate_classifier_examples(
            fwd_models, tf_dataset, dataset, labeling_params, batch_size)
        for out_examples in out_examples_gen:
            for out_examples_for_start_t in out_examples:
                actual_batch_size = out_examples_for_start_t['traj_idx'].shape[
                    0]
                for batch_idx in range(actual_batch_size):
                    out_example_b = index_dict_of_batched_tensors_tf(
                        out_examples_for_start_t, batch_idx)

                    if out_example_b['time_idx'].ndim == 0:
                        continue

                    if visualize:
                        add_label(out_example_b, labeling_params['threshold'])
                        classifier_dataset_for_viz.anim_transition_rviz(
                            out_example_b)

                    tf_write_example(full_output_directory, out_example_b,
                                     total_example_idx)
                    rospy.loginfo_throttle(
                        10,
                        f"Examples: {total_example_idx:10d}, Time: {perf_counter() - t0:.3f}"
                    )
                    total_example_idx += 1

    return outdir