# Get filename filename = argv[1] # Determine axial level axial_level = int(argv[2]) if len(argv) > 2 else 1 score = int(argv[3]) if len(argv) > 3 else 1 # Create StatePoint object sp = StatePoint(filename) # Read number of realizations for global tallies sp.n_realizations = sp._get_int()[0] # Read global tallies n_global_tallies = sp._get_int()[0] sp.global_tallies = np.array(sp._get_double(2 * n_global_tallies)) sp.global_tallies.shape = (n_global_tallies, 2) # Flag indicating if tallies are present tallies_present = sp._get_int()[0] # Check if tallies are present if not tallies_present: raise Exception("No tally data in state point!") # Loop over all tallies print("Reading data...") for t in sp.tallies: # Calculate t-value for 95% two-sided CI n = t.n_realizations t_value = scipy.stats.t.ppf(0.975, n - 1)
# Create lists for tallies mean = np.zeros((nx,ny)) error = np.zeros((nx,ny)) criteria = np.zeros((nx,ny)) # Determine starting position for data start = sp1._f.tell() for x in range(nx): for y in range(ny): # Seek to position of data sp1._f.seek(start + x*ny*nz*ns*16 + y*nz*ns*16) # Read sum and sum-squared s, s2 = sp1._get_double(2) s /= n mean[x,y] = s if s != 0.0: error[x,y] = t_value*sqrt((s2/n - s*s)/(n-1))/s # Make figure plt.imshow(error, interpolation="nearest", vmin=0.0, vmax=0.03) cb = plt.colorbar() [t.set_fontsize(16) for t in cb.ax.get_yticklabels()] plt.xlim((0,nx)) plt.ylim((0,ny)) plt.xticks(range(1), ('')) plt.yticks(range(1), ('')) plt.savefig('opr-without-ufs.pdf', bbox_inches='tight') plt.close()
# Get filename filename = argv[1] # Determine axial level axial_level = int(argv[2]) if len(argv) > 2 else 1 score = int(argv[3]) if len(argv) > 3 else 1 # Create StatePoint object sp = StatePoint(filename) # Read number of realizations for global tallies sp.n_realizations = sp._get_int()[0] # Read global tallies n_global_tallies = sp._get_int()[0] sp.global_tallies = np.array(sp._get_double(2*n_global_tallies)) sp.global_tallies.shape = (n_global_tallies, 2) # Flag indicating if tallies are present tallies_present = sp._get_int()[0] # Check if tallies are present if not tallies_present: raise Exception("No tally data in state point!") # Loop over all tallies print("Reading data...") for t in sp.tallies: # Calculate t-value for 95% two-sided CI n = t.n_realizations t_value = scipy.stats.t.ppf(0.975, n - 1)
# Create lists for tallies mean = np.zeros((nx, ny)) error = np.zeros((nx, ny)) criteria = np.zeros((nx, ny)) # Determine starting position for data start = sp1._f.tell() for x in range(nx): for y in range(ny): # Seek to position of data sp1._f.seek(start + x * ny * nz * ns * 16 + y * nz * ns * 16) # Read sum and sum-squared s, s2 = sp1._get_double(2) s /= n mean[x, y] = s if s != 0.0: error[x, y] = t_value * sqrt((s2 / n - s * s) / (n - 1)) / s # Make figure plt.imshow(error, interpolation="nearest", vmin=0.0, vmax=0.03) cb = plt.colorbar() [t.set_fontsize(16) for t in cb.ax.get_yticklabels()] plt.xlim((0, nx)) plt.ylim((0, ny)) plt.xticks(range(1), ('')) plt.yticks(range(1), ('')) plt.savefig('opr-without-ufs.pdf', bbox_inches='tight') plt.close()