示例#1
0
    def test_score_test(self):
        res1 = self.res1
        modr = self.klass(endog, exog.values[:, :-1])
        resr = modr.fit(method="newton", maxiter=300)
        params_restr = np.concatenate(
            [resr.params[:-1], [0], resr.params[-1:]])
        r_matrix = np.zeros((1, len(params_restr)))
        r_matrix[0, -2] = 1
        exog_extra = res1.model.exog[:, -1:]

        from statsmodels.base._parameter_inference import score_test
        sc1 = score_test(res1,
                         params_constrained=params_restr,
                         k_constraints=1)
        sc2 = score_test(resr, exog_extra=(exog_extra, None))
        assert_allclose(sc2[:2], sc1[:2])

        sc1_hc = score_test(res1,
                            params_constrained=params_restr,
                            k_constraints=1,
                            r_matrix=r_matrix,
                            cov_type="HC0")
        sc2_hc = score_test(resr,
                            exog_extra=(exog_extra, None),
                            cov_type="HC0")
        assert_allclose(sc2_hc[:2], sc1_hc[:2])
示例#2
0
    def test_wald_score(self):
        mod_full = self.model_full
        mod_drop = self.model_drop
        restriction = 'x5=0, x6=0'
        res_full = mod_full.fit()
        res_constr = mod_full.fit_constrained('x5=0, x6=0')
        res_drop = mod_drop.fit()

        wald = res_full.wald_test(restriction)
        lm_constr = np.hstack(score_test(res_constr))
        lm_extra = np.hstack(score_test(res_drop, exog_extra=self.exog_extra))

        res_wald = np.hstack([wald.statistic.squeeze(), wald.pvalue, [wald.df_denom]])
        assert_allclose(lm_constr, res_wald, rtol=self.rtol_ws, atol=self.atol_ws)
        assert_allclose(lm_extra, res_wald, rtol=self.rtol_ws, atol=self.atol_ws)
        assert_allclose(lm_constr, lm_extra, rtol=1e-12, atol=1e-14)
        # regression number
        assert_allclose(lm_constr[1], self.res_pvalue[0], rtol=1e-12, atol=1e-14)

        cov_type='HC0'
        res_full_hc = mod_full.fit(cov_type=cov_type, start_params=res_full.params)
        wald = res_full_hc.wald_test(restriction)
        lm_constr = np.hstack(score_test(res_constr, cov_type=cov_type))
        lm_extra = np.hstack(score_test(res_drop, exog_extra=self.exog_extra,
                                        cov_type=cov_type))

        res_wald = np.hstack([wald.statistic.squeeze(), wald.pvalue, [wald.df_denom]])
        assert_allclose(lm_constr, res_wald, rtol=self.rtol_ws, atol=self.atol_ws)
        assert_allclose(lm_extra, res_wald, rtol=self.rtol_ws, atol=self.atol_ws)
        assert_allclose(lm_constr, lm_extra, rtol=1e-13)
        # regression number
        assert_allclose(lm_constr[1], self.res_pvalue[1], rtol=1e-12, atol=1e-14)

        if not self.skip_wooldridge:
            # compare with Wooldridge auxiliary regression
            # does not work for Poisson, even with family attribute
            # diao.lm_test_glm assumes fittedvalues is mean (not linear pred)
            lm_wooldridge = diao.lm_test_glm(res_drop, self.exog_extra)
            assert_allclose(lm_wooldridge.pval1, self.res_pvalue[0],
                            rtol=1e-12, atol=1e-14)
            assert_allclose(lm_wooldridge.pval3, self.res_pvalue[1],
                            rtol=self.rtol_wooldridge)
            # smoke test
            lm_wooldridge.summary()
示例#3
0
    def test_score_test(self):
        res1 = self.res1
        resr = self.resr
        params_restr = np.concatenate([resr.params, [0]])
        r_matrix = np.zeros((1, len(params_restr)))
        r_matrix[0, -1] = 1
        exog_prec_extra = res1.model.exog_precision[:, 1:]

        from statsmodels.base._parameter_inference import score_test
        sc1 = score_test(res1, params_constrained=params_restr,
                         k_constraints=1)
        sc2 = score_test(resr, exog_extra=(None, exog_prec_extra))
        assert_allclose(sc2[:2], sc1[:2])

        sc1_hc = score_test(res1, params_constrained=params_restr,
                            k_constraints=1, r_matrix=r_matrix, cov_type="HC0")
        sc2_hc = score_test(resr, exog_extra=(None, exog_prec_extra),
                            cov_type="HC0")
        assert_allclose(sc2_hc[:2], sc1_hc[:2])
示例#4
0
    def test_score_test_alpha(self):
        # this is mostly sanity check
        # we need heteroscedastic model, i.e. exog_dispersion as comparison
        # res1 = self.res1
        modr = self.klass(endog, exog.values[:, :-1])
        resr = modr.fit(method="newton", maxiter=300)
        params_restr = np.concatenate([resr.params[:], [0]])
        r_matrix = np.zeros((1, len(params_restr)))
        r_matrix[0, -1] = 1
        # use random expg_extra, then we don't reject null
        # exog_extra = res1.model.exog[:, 1:2]
        np.random.seed(987125643)
        exog_extra = 0.01 * np.random.randn(endog.shape[0])

        from statsmodels.base._parameter_inference import (score_test,
                                                           _scorehess_extra)

        # note: we need params for the restricted model here
        # if params is not given, then it will be taked from results instance
        sh = _scorehess_extra(resr,
                              exog_extra=None,
                              exog2_extra=exog_extra,
                              hess_kwds=None)
        assert not np.isnan(sh[0]).any()

        # sc1 = score_test(res1, params_constrained=params_restr,
        #                  k_constraints=1)
        sc2 = score_test(resr, exog_extra=(None, exog_extra))
        assert sc2[1] > 0.01

        # sc1_hc = score_test(res1, params_constrained=params_restr,
        #                   k_constraints=1, r_matrix=r_matrix, cov_type="HC0")
        sc2_hc = score_test(resr,
                            exog_extra=(None, exog_extra),
                            cov_type="HC0")
        assert sc2_hc[1] > 0.01