def txest_vcomp_1(self): """ Fit the same model using constrained random effects and variance components. """ np.random.seed(4279) exog = np.random.normal(size=(400, 1)) exog_re = np.random.normal(size=(400, 2)) groups = np.kron(np.arange(100), np.ones(4)) slopes = np.random.normal(size=(100, 2)) slopes[:, 1] *= 2 slopes = np.kron(slopes, np.ones((4, 1))) * exog_re errors = slopes.sum(1) + np.random.normal(size=400) endog = exog.sum(1) + errors free = MixedLMParams(1, 2, 0) free.fe_params = np.ones(1) free.cov_re = np.eye(2) free.vcomp = np.zeros(0) model1 = MixedLM(endog, exog, groups, exog_re=exog_re) result1 = model1.fit(free=free) exog_vc = {"a": {}, "b": {}} for k,group in enumerate(model1.group_labels): ix = model1.row_indices[group] exog_vc["a"][group] = exog_re[ix, 0:1] exog_vc["b"][group] = exog_re[ix, 1:2] model2 = MixedLM(endog, exog, groups, exog_vc=exog_vc) result2 = model2.fit() result2.summary() assert_allclose(result1.fe_params, result2.fe_params, atol=1e-4) assert_allclose(np.diag(result1.cov_re), result2.vcomp, atol=1e-2, rtol=1e-4) assert_allclose(result1.bse[[0, 1, 3]], result2.bse, atol=1e-2, rtol=1e-2)
def do1(reml, irf, ds_ix): # No need to check independent random effects when there is # only one of them. if irf and ds_ix < 6: return irfs = "irf" if irf else "drf" meth = "reml" if reml else "ml" rslt = R_Results(meth, irfs, ds_ix) # Fit the model md = MixedLM(rslt.endog, rslt.exog_fe, rslt.groups, rslt.exog_re) if not irf: # Free random effects covariance if np.any(np.diag(rslt.cov_re_r) < 1e-5): with warnings.catch_warnings(): warnings.simplefilter("ignore") mdf = md.fit(gtol=1e-7, reml=reml) else: mdf = md.fit(gtol=1e-7, reml=reml) else: # Independent random effects k_fe = rslt.exog_fe.shape[1] k_re = rslt.exog_re.shape[1] free = MixedLMParams(k_fe, k_re, 0) free.fe_params = np.ones(k_fe) free.cov_re = np.eye(k_re) free.vcomp = np.array([]) if np.any(np.diag(rslt.cov_re_r) < 1e-5): with warnings.catch_warnings(): warnings.simplefilter("ignore") mdf = md.fit(reml=reml, gtol=1e-7, free=free) else: mdf = md.fit(reml=reml, gtol=1e-7, free=free) assert_almost_equal(mdf.fe_params, rslt.coef, decimal=4) assert_almost_equal(mdf.cov_re, rslt.cov_re_r, decimal=4) assert_almost_equal(mdf.scale, rslt.scale_r, decimal=4) k_fe = md.k_fe assert_almost_equal(rslt.vcov_r, mdf.cov_params()[0:k_fe, 0:k_fe], decimal=3) assert_almost_equal(mdf.llf, rslt.loglike[0], decimal=2) # Not supported in R except for independent random effects if not irf: assert_almost_equal(mdf.random_effects[0], rslt.ranef_postmean, decimal=3) assert_almost_equal(mdf.random_effects_cov[0], rslt.ranef_condvar, decimal=3)
def test_vcomp_1(self): """ Fit the same model using constrained random effects and variance components. """ import scipy v = scipy.__version__.split(".")[1] v = int(v) if v < 16: return np.random.seed(4279) exog = np.random.normal(size=(400, 1)) exog_re = np.random.normal(size=(400, 2)) groups = np.kron(np.arange(100), np.ones(4)) slopes = np.random.normal(size=(100, 2)) slopes[:, 1] *= 2 slopes = np.kron(slopes, np.ones((4, 1))) * exog_re errors = slopes.sum(1) + np.random.normal(size=400) endog = exog.sum(1) + errors free = MixedLMParams(1, 2, 0) free.fe_params = np.ones(1) free.cov_re = np.eye(2) free.vcomp = np.zeros(0) model1 = MixedLM(endog, exog, groups, exog_re=exog_re) result1 = model1.fit(free=free) exog_vc = {"a": {}, "b": {}} for k, group in enumerate(model1.group_labels): ix = model1.row_indices[group] exog_vc["a"][group] = exog_re[ix, 0:1] exog_vc["b"][group] = exog_re[ix, 1:2] model2 = MixedLM(endog, exog, groups, exog_vc=exog_vc) result2 = model2.fit() result2.summary() assert_allclose(result1.fe_params, result2.fe_params, atol=1e-4) assert_allclose(np.diag(result1.cov_re), result2.vcomp, atol=1e-2, rtol=1e-4) assert_allclose(result1.bse[[0, 1, 3]], result2.bse, atol=1e-2, rtol=1e-2)
def f(x): params = MixedLMParams.from_packed(x, model.k_fe, model.k_re, model.use_sqrt, has_fe=has_fe) return -model.loglike(params, profile_fe=profile_fe)
def __fit__(correctors, correctors_re, groups, predictors, observations, sample_weight=None, n_jobs=-1, *args, **kwargs): ncols = correctors.shape[1] dims = (correctors.shape[0], ncols + predictors.shape[1]) xdata = np.zeros(dims) xdata[:, :ncols] = correctors.view() xdata[:, ncols:] = predictors.view() M = observations.shape[1] K = correctors.shape[1] params = np.empty((K, M), dtype=object) for it_m in range(M): free = MixedLMParams.from_components( fe_params=np.ones(xdata.shape[1]), cov_re=np.eye(correctors_re.shape[1])) model = MixedLM(endog=observations, exog=xdata, groups=groups, exog_re=correctors_re) results = model.fit(free=free) params[..., it_m] = free return (params[:ncols], params[ncols:])
def do1(self, reml, irf, ds_ix): # No need to check independent random effects when there is # only one of them. if irf and ds_ix < 6: return irfs = "irf" if irf else "drf" meth = "reml" if reml else "ml" rslt = R_Results(meth, irfs, ds_ix) # Fit the model md = MixedLM(rslt.endog, rslt.exog_fe, rslt.groups, rslt.exog_re) if not irf: # Free random effects covariance mdf = md.fit(gtol=1e-7, reml=reml) else: # Independent random effects k_fe = rslt.exog_fe.shape[1] k_re = rslt.exog_re.shape[1] free = MixedLMParams(k_fe, k_re) free.set_fe_params(np.ones(k_fe)) free.set_cov_re(np.eye(k_re)) mdf = md.fit(reml=reml, gtol=1e-7, free=free) assert_almost_equal(mdf.fe_params, rslt.coef, decimal=4) assert_almost_equal(mdf.cov_re, rslt.cov_re_r, decimal=4) assert_almost_equal(mdf.scale, rslt.scale_r, decimal=4) pf = rslt.exog_fe.shape[1] assert_almost_equal(rslt.vcov_r, mdf.cov_params()[0:pf,0:pf], decimal=3) assert_almost_equal(mdf.likeval, rslt.loglike[0], decimal=2) # Not supported in R if not irf: assert_almost_equal(mdf.ranef()[0], rslt.ranef_postmean, decimal=3) assert_almost_equal(mdf.ranef_cov()[0], rslt.ranef_condvar, decimal=3)
def test_vcomp_1(self): # Fit the same model using constrained random effects and # variance components. np.random.seed(4279) exog = np.random.normal(size=(400, 1)) exog_re = np.random.normal(size=(400, 2)) groups = np.kron(np.arange(100), np.ones(4)) slopes = np.random.normal(size=(100, 2)) slopes[:, 1] *= 2 slopes = np.kron(slopes, np.ones((4, 1))) * exog_re errors = slopes.sum(1) + np.random.normal(size=400) endog = exog.sum(1) + errors free = MixedLMParams(1, 2, 0) free.fe_params = np.ones(1) free.cov_re = np.eye(2) free.vcomp = np.zeros(0) model1 = MixedLM(endog, exog, groups, exog_re=exog_re) result1 = model1.fit(free=free) exog_vc = {"a": {}, "b": {}} for k, group in enumerate(model1.group_labels): ix = model1.row_indices[group] exog_vc["a"][group] = exog_re[ix, 0:1] exog_vc["b"][group] = exog_re[ix, 1:2] with pytest.warns(UserWarning, match="Using deprecated variance"): model2 = MixedLM(endog, exog, groups, exog_vc=exog_vc) result2 = model2.fit() result2.summary() assert_allclose(result1.fe_params, result2.fe_params, atol=1e-4) assert_allclose(np.diag(result1.cov_re), result2.vcomp, atol=1e-2, rtol=1e-4) assert_allclose(result1.bse[[0, 1, 3]], result2.bse, atol=1e-2, rtol=1e-2)
def do1(self, reml, irf, ds_ix): # No need to check independent random effects when there is # only one of them. if irf and ds_ix < 6: return irfs = "irf" if irf else "drf" meth = "reml" if reml else "ml" rslt = R_Results(meth, irfs, ds_ix) # Fit the model md = MixedLM(rslt.endog, rslt.exog_fe, rslt.groups, rslt.exog_re) if not irf: # Free random effects covariance mdf = md.fit(gtol=1e-7, reml=reml) else: # Independent random effects k_fe = rslt.exog_fe.shape[1] k_re = rslt.exog_re.shape[1] free = MixedLMParams(k_fe, k_re) free.set_fe_params(np.ones(k_fe)) free.set_cov_re(np.eye(k_re)) mdf = md.fit(reml=reml, gtol=1e-7, free=free) assert_almost_equal(mdf.fe_params, rslt.coef, decimal=4) assert_almost_equal(mdf.cov_re, rslt.cov_re_r, decimal=4) assert_almost_equal(mdf.scale, rslt.scale_r, decimal=4) pf = rslt.exog_fe.shape[1] assert_almost_equal(rslt.vcov_r, mdf.cov_params()[0:pf, 0:pf], decimal=3) assert_almost_equal(mdf.llf, rslt.loglike[0], decimal=2) # Not supported in R if not irf: assert_almost_equal(mdf.random_effects.ix[0], rslt.ranef_postmean, decimal=3) assert_almost_equal(mdf.random_effects_cov[0], rslt.ranef_condvar, decimal=3)
def test_compare_numdiff(self): n_grp = 200 grpsize = 5 k_fe = 3 k_re = 2 for use_sqrt in False, True: for reml in False, True: for profile_fe in False, True: np.random.seed(3558) exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe)) exog_re = np.random.normal(size=(n_grp * grpsize, k_re)) exog_re[:, 0] = 1 exog_vc = np.random.normal(size=(n_grp * grpsize, 3)) slopes = np.random.normal(size=(n_grp, k_re)) slopes[:, -1] *= 2 slopes = np.kron(slopes, np.ones((grpsize, 1))) slopes_vc = np.random.normal(size=(n_grp, 3)) slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1))) slopes_vc[:, -1] *= 2 re_values = (slopes * exog_re).sum(1) vc_values = (slopes_vc * exog_vc).sum(1) err = np.random.normal(size=n_grp * grpsize) endog = exog_fe.sum(1) + re_values + vc_values + err groups = np.kron(range(n_grp), np.ones(grpsize)) vc = {"a": {}, "b": {}} for i in range(n_grp): ix = np.flatnonzero(groups == i) vc["a"][i] = exog_vc[ix, 0:2] vc["b"][i] = exog_vc[ix, 2:3] model = MixedLM(endog, exog_fe, groups, exog_re, exog_vc=vc, use_sqrt=use_sqrt) rslt = model.fit(reml=reml) loglike = loglike_function(model, profile_fe=profile_fe, has_fe=not profile_fe) # Test the score at several points. for kr in range(5): fe_params = np.random.normal(size=k_fe) cov_re = np.random.normal(size=(k_re, k_re)) cov_re = np.dot(cov_re.T, cov_re) vcomp = np.random.normal(size=2) ** 2 params = MixedLMParams.from_components(fe_params, cov_re=cov_re, vcomp=vcomp) params_vec = params.get_packed(has_fe=not profile_fe, use_sqrt=use_sqrt) # Check scores gr = -model.score(params, profile_fe=profile_fe) ngr = nd.approx_fprime(params_vec, loglike) assert_allclose(gr, ngr, rtol=1e-3) # Check Hessian matrices at the MLE (we don't have # the profile Hessian matrix and we don't care # about the Hessian for the square root # transformed parameter). if (profile_fe is False) and (use_sqrt is False): hess = -model.hessian(rslt.params_object) params_vec = rslt.params_object.get_packed(use_sqrt=False, has_fe=True) loglike_h = loglike_function(model, profile_fe=False, has_fe=True) nhess = nd.approx_hess(params_vec, loglike_h) assert_allclose(hess, nhess, rtol=1e-3)
def test_compare_numdiff(self): import statsmodels.tools.numdiff as nd n_grp = 200 grpsize = 5 k_fe = 3 k_re = 2 for jl in 0, 1: for reml in False, True: for cov_pen_wt in 0, 10: cov_pen = penalties.PSD(cov_pen_wt) np.random.seed(3558) exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe)) exog_re = np.random.normal(size=(n_grp * grpsize, k_re)) exog_re[:, 0] = 1 slopes = np.random.normal(size=(n_grp, k_re)) slopes = np.kron(slopes, np.ones((grpsize, 1))) re_values = (slopes * exog_re).sum(1) err = np.random.normal(size=n_grp * grpsize) endog = exog_fe.sum(1) + re_values + err groups = np.kron(range(n_grp), np.ones(grpsize)) if jl == 0: md = MixedLM(endog, exog_fe, groups, exog_re) score = lambda x: -md.score_sqrt(x) hessian = lambda x: -md.hessian_sqrt(x) else: md = MixedLM(endog, exog_fe, groups, exog_re, use_sqrt=False) score = lambda x: -md.score_full(x) hessian = lambda x: -md.hessian_full(x) md.reml = reml md.cov_pen = cov_pen loglike = lambda x: -md.loglike(x) rslt = md.fit() # Test the score at several points. for kr in range(5): fe_params = np.random.normal(size=k_fe) cov_re = np.random.normal(size=(k_re, k_re)) cov_re = np.dot(cov_re.T, cov_re) params = MixedLMParams.from_components( fe_params, cov_re) if jl == 0: params_vec = params.get_packed() else: params_vec = params.get_packed(use_sqrt=False) # Check scores gr = score(params) ngr = nd.approx_fprime(params_vec, loglike) assert_allclose(gr, ngr, rtol=1e-2) # Hessian matrices don't agree well away from # the MLE. #if cov_pen_wt == 0: # hess = hessian(params) # nhess = nd.approx_hess(params_vec, loglike) # assert_allclose(hess, nhess, rtol=1e-2) # Check Hessian matrices at the MLE. if cov_pen_wt == 0: hess = hessian(rslt.params_object) params_vec = rslt.params_object.get_packed() nhess = nd.approx_hess(params_vec, loglike) assert_allclose(hess, nhess, rtol=1e-2)
def test_compare_numdiff(self, use_sqrt, reml, profile_fe): n_grp = 200 grpsize = 5 k_fe = 3 k_re = 2 np.random.seed(3558) exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe)) exog_re = np.random.normal(size=(n_grp * grpsize, k_re)) exog_re[:, 0] = 1 exog_vc = np.random.normal(size=(n_grp * grpsize, 3)) slopes = np.random.normal(size=(n_grp, k_re)) slopes[:, -1] *= 2 slopes = np.kron(slopes, np.ones((grpsize, 1))) slopes_vc = np.random.normal(size=(n_grp, 3)) slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1))) slopes_vc[:, -1] *= 2 re_values = (slopes * exog_re).sum(1) vc_values = (slopes_vc * exog_vc).sum(1) err = np.random.normal(size=n_grp * grpsize) endog = exog_fe.sum(1) + re_values + vc_values + err groups = np.kron(range(n_grp), np.ones(grpsize)) vc = {"a": {}, "b": {}} for i in range(n_grp): ix = np.flatnonzero(groups == i) vc["a"][i] = exog_vc[ix, 0:2] vc["b"][i] = exog_vc[ix, 2:3] model = MixedLM( endog, exog_fe, groups, exog_re, exog_vc=vc, use_sqrt=use_sqrt) rslt = model.fit(reml=reml) loglike = loglike_function( model, profile_fe=profile_fe, has_fe=not profile_fe) try: # Test the score at several points. for kr in range(5): fe_params = np.random.normal(size=k_fe) cov_re = np.random.normal(size=(k_re, k_re)) cov_re = np.dot(cov_re.T, cov_re) vcomp = np.random.normal(size=2)**2 params = MixedLMParams.from_components( fe_params, cov_re=cov_re, vcomp=vcomp) params_vec = params.get_packed( has_fe=not profile_fe, use_sqrt=use_sqrt) # Check scores gr = -model.score(params, profile_fe=profile_fe) ngr = nd.approx_fprime(params_vec, loglike) assert_allclose(gr, ngr, rtol=1e-3) # Check Hessian matrices at the MLE (we don't have # the profile Hessian matrix and we don't care # about the Hessian for the square root # transformed parameter). if (profile_fe is False) and (use_sqrt is False): hess = -model.hessian(rslt.params_object) params_vec = rslt.params_object.get_packed( use_sqrt=False, has_fe=True) loglike_h = loglike_function( model, profile_fe=False, has_fe=True) nhess = nd.approx_hess(params_vec, loglike_h) assert_allclose(hess, nhess, rtol=1e-3) except AssertionError: # See GH#5628; because this test fails unpredictably but only on # OSX, we only xfail it there. if PLATFORM_OSX: pytest.xfail("fails on OSX due to unresolved " "numerical differences") else: raise
def f(x): params = MixedLMParams.from_packed(x, model.k_fe, model.use_sqrt, has_fe=not profile_fe) return -model.score(params, profile_fe=profile_fe)
def test_compare_numdiff(self): n_grp = 200 grpsize = 5 k_fe = 3 k_re = 2 for use_sqrt in False, True: for reml in False, True: for profile_fe in False, True: np.random.seed(3558) exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe)) exog_re = np.random.normal(size=(n_grp * grpsize, k_re)) exog_re[:, 0] = 1 exog_vc = np.random.normal(size=(n_grp * grpsize, 3)) slopes = np.random.normal(size=(n_grp, k_re)) slopes[:, -1] *= 2 slopes = np.kron(slopes, np.ones((grpsize, 1))) slopes_vc = np.random.normal(size=(n_grp, 3)) slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1))) slopes_vc[:, -1] *= 2 re_values = (slopes * exog_re).sum(1) vc_values = (slopes_vc * exog_vc).sum(1) err = np.random.normal(size=n_grp * grpsize) endog = exog_fe.sum(1) + re_values + vc_values + err groups = np.kron(range(n_grp), np.ones(grpsize)) vc = {"a": {}, "b": {}} for i in range(n_grp): ix = np.flatnonzero(groups == i) vc["a"][i] = exog_vc[ix, 0:2] vc["b"][i] = exog_vc[ix, 2:3] model = MixedLM(endog, exog_fe, groups, exog_re, exog_vc=vc, use_sqrt=use_sqrt) rslt = model.fit(reml=reml) loglike = loglike_function(model, profile_fe=profile_fe, has_fe=not profile_fe) # Test the score at several points. for kr in range(5): fe_params = np.random.normal(size=k_fe) cov_re = np.random.normal(size=(k_re, k_re)) cov_re = np.dot(cov_re.T, cov_re) vcomp = np.random.normal(size=2)**2 params = MixedLMParams.from_components(fe_params, cov_re=cov_re, vcomp=vcomp) params_vec = params.get_packed(has_fe=not profile_fe, use_sqrt=use_sqrt) # Check scores gr = -model.score(params, profile_fe=profile_fe) ngr = nd.approx_fprime(params_vec, loglike) assert_allclose(gr, ngr, rtol=1e-3) # Check Hessian matrices at the MLE (we don't have # the profile Hessian matrix and we don't care # about the Hessian for the square root # transformed parameter). if (profile_fe is False) and (use_sqrt is False): hess = -model.hessian(rslt.params_object) params_vec = rslt.params_object.get_packed( use_sqrt=False, has_fe=True) loglike_h = loglike_function(model, profile_fe=False, has_fe=True) nhess = nd.approx_hess(params_vec, loglike_h) assert_allclose(hess, nhess, rtol=1e-3)
def test_compare_numdiff(self, use_sqrt, reml, profile_fe): n_grp = 200 grpsize = 5 k_fe = 3 k_re = 2 np.random.seed(3558) exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe)) exog_re = np.random.normal(size=(n_grp * grpsize, k_re)) exog_re[:, 0] = 1 exog_vc = np.random.normal(size=(n_grp * grpsize, 3)) slopes = np.random.normal(size=(n_grp, k_re)) slopes[:, -1] *= 2 slopes = np.kron(slopes, np.ones((grpsize, 1))) slopes_vc = np.random.normal(size=(n_grp, 3)) slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1))) slopes_vc[:, -1] *= 2 re_values = (slopes * exog_re).sum(1) vc_values = (slopes_vc * exog_vc).sum(1) err = np.random.normal(size=n_grp * grpsize) endog = exog_fe.sum(1) + re_values + vc_values + err groups = np.kron(range(n_grp), np.ones(grpsize)) vc = {"a": {}, "b": {}} for i in range(n_grp): ix = np.flatnonzero(groups == i) vc["a"][i] = exog_vc[ix, 0:2] vc["b"][i] = exog_vc[ix, 2:3] model = MixedLM(endog, exog_fe, groups, exog_re, exog_vc=vc, use_sqrt=use_sqrt) rslt = model.fit(reml=reml) loglike = loglike_function(model, profile_fe=profile_fe, has_fe=not profile_fe) try: # Test the score at several points. for kr in range(5): fe_params = np.random.normal(size=k_fe) cov_re = np.random.normal(size=(k_re, k_re)) cov_re = np.dot(cov_re.T, cov_re) vcomp = np.random.normal(size=2)**2 params = MixedLMParams.from_components(fe_params, cov_re=cov_re, vcomp=vcomp) params_vec = params.get_packed(has_fe=not profile_fe, use_sqrt=use_sqrt) # Check scores gr = -model.score(params, profile_fe=profile_fe) ngr = nd.approx_fprime(params_vec, loglike) assert_allclose(gr, ngr, rtol=1e-3) # Check Hessian matrices at the MLE (we do not have # the profile Hessian matrix and we do not care # about the Hessian for the square root # transformed parameter). if (profile_fe is False) and (use_sqrt is False): hess = -model.hessian(rslt.params_object) params_vec = rslt.params_object.get_packed(use_sqrt=False, has_fe=True) loglike_h = loglike_function(model, profile_fe=False, has_fe=True) nhess = nd.approx_hess(params_vec, loglike_h) assert_allclose(hess, nhess, rtol=1e-3) except AssertionError: # See GH#5628; because this test fails unpredictably but only on # OSX, we only xfail it there. if PLATFORM_OSX: pytest.xfail("fails on OSX due to unresolved " "numerical differences") else: raise
def test_compare_numdiff(self): import statsmodels.tools.numdiff as nd n_grp = 200 grpsize = 5 k_fe = 3 k_re = 2 for jl in 0,1: for reml in False,True: for cov_pen_wt in 0,10: cov_pen = penalties.PSD(cov_pen_wt) np.random.seed(3558) exog_fe = np.random.normal(size=(n_grp*grpsize, k_fe)) exog_re = np.random.normal(size=(n_grp*grpsize, k_re)) exog_re[:, 0] = 1 slopes = np.random.normal(size=(n_grp, k_re)) slopes = np.kron(slopes, np.ones((grpsize,1))) re_values = (slopes * exog_re).sum(1) err = np.random.normal(size=n_grp*grpsize) endog = exog_fe.sum(1) + re_values + err groups = np.kron(range(n_grp), np.ones(grpsize)) if jl == 0: md = MixedLM(endog, exog_fe, groups, exog_re) score = lambda x: -md.score_sqrt(x) hessian = lambda x : -md.hessian_sqrt(x) else: md = MixedLM(endog, exog_fe, groups, exog_re, use_sqrt=False) score = lambda x: -md.score_full(x) hessian = lambda x: -md.hessian_full(x) md.reml = reml md.cov_pen = cov_pen loglike = lambda x: -md.loglike(x) rslt = md.fit() # Test the score at several points. for kr in range(5): fe_params = np.random.normal(size=k_fe) cov_re = np.random.normal(size=(k_re, k_re)) cov_re = np.dot(cov_re.T, cov_re) params = MixedLMParams.from_components(fe_params, cov_re) if jl == 0: params_vec = params.get_packed() else: params_vec = params.get_packed(use_sqrt=False) # Check scores gr = score(params) ngr = nd.approx_fprime(params_vec, loglike) assert_allclose(gr, ngr, rtol=1e-2) # Hessian matrices don't agree well away from # the MLE. #if cov_pen_wt == 0: # hess = hessian(params) # nhess = nd.approx_hess(params_vec, loglike) # assert_allclose(hess, nhess, rtol=1e-2) # Check Hessian matrices at the MLE. if cov_pen_wt == 0: hess = hessian(rslt.params_object) params_vec = rslt.params_object.get_packed() nhess = nd.approx_hess(params_vec, loglike) assert_allclose(hess, nhess, rtol=1e-2)
# priors.setD3(result.fe_params.values.reshape(mousediet.p, 1)) # priors.setD4(pinv(result.cov_params().iloc[:mousediet.p, # :mousediet.p].values)) # priors.setPai(0.5*np.ones(mousediet.grp)) # priors.setSigma2(result.scale) ## quadratic mousediet.setParams(p=3) data = mousediet.rawdata[mousediet.rawdata['diet'] == 99] data['days2'] = data['days']**2 model = sm.MixedLM.from_formula('weight ~ days + days2', data, re_formula='1 + days + days2', groups=data['id']) free = MixedLMParams(3, 3) free.set_fe_params(np.ones(3)) free.set_cov_re(np.eye(3)) result = model.fit(free=free) # uninformative prior priors.setD1(0.001) priors.setD2(0.001) priors.setD3(result.fe_params.values.reshape(mousediet.p, 1)) priors.setD4(pinv(result.cov_params().iloc[:mousediet.p, :mousediet.p].values)) priors.setPai(0.5*np.ones(mousediet.grp)) priors.setSigma2(result.scale)
# priors.setD3(result.fe_params.values.reshape(mousediet.p, 1)) # priors.setD4(pinv(result.cov_params().iloc[:mousediet.p, # :mousediet.p].values)) # priors.setPai(0.5*np.ones(mousediet.grp)) # priors.setSigma2(result.scale) ## quadratic mousediet.setParams(p=3) data = mousediet.rawdata[mousediet.rawdata['diet'] == 99] data['days2'] = data['days']**2 model = sm.MixedLM.from_formula('weight ~ days + days2', data, re_formula='1 + days + days2', groups=data['id']) free = MixedLMParams(3, 3) free.set_fe_params(np.ones(3)) free.set_cov_re(np.eye(3)) result = model.fit(free=free) # uninformative prior priors.setD1(0.001) priors.setD2(0.001) priors.setD3(result.fe_params.values.reshape(mousediet.p, 1)) priors.setD4( pinv(result.cov_params().iloc[:mousediet.p, :mousediet.p].values)) priors.setPai(0.5 * np.ones(mousediet.grp)) priors.setSigma2(result.scale) mcmcrun(mousediet, priors, dirname)