示例#1
0
 def test_non_seasonal_arima3(self):
     ts_data = self.getData4()
     f_name='non_seasonal_arima3.pmml'
     model = ARIMA(ts_data,order=(1, 0, 1))
     result = model.fit(trend = 'c', method = 'css-mle')
     StatsmodelsToPmml(result, f_name, description="A test model")
     self.assertEqual(os.path.isfile(f_name),True)
示例#2
0
 def test_non_seasonal_arima1(self):
     ts_data = self.getData4()
     f_name='non_seasonal_arima1.pmml'
     model = ARIMA(ts_data,order=(9, 2, 0))
     result = model.fit(trend = 'c', method = 'css-mle')
     StatsmodelsToPmml(result, f_name, model_name="arima_920")
     self.assertEqual(os.path.isfile(f_name),True)
示例#3
0
 def test_non_seasonal_arima8(self):
     ts_data = self.statsmodels_data_helper.get_non_seasonal_data()
     f_name = 'non_seasonal_arima8.pmml'
     model = ARIMA(ts_data, order=(5, 1, 2))
     result = model.fit(trend='c', method='mle')
     ArimaToPMML(result, f_name, conf_int=[80, 95])
     self.assertEqual(self.schema.is_valid(f_name), True)
 def test_non_seasonal_arima2(self):
     ts_data = self.getData4()
     f_name = 'non_seasonal_arima2.pmml'
     model = ARIMA(ts_data, order=(9, 2, 3))
     result = model.fit(trend='nc', method='css-mle')
     ArimaToPMML(result, f_name, description="A test model")
     self.assertEqual(os.path.isfile(f_name), True)
示例#5
0
 def test_non_seasonal_arima1(self):
     ts_data = self.statsmodels_data_helper.get_non_seasonal_data()
     f_name = 'non_seasonal_arima1.pmml'
     model = ARIMA(ts_data, order=(9, 2, 0))
     result = model.fit(trend='c', method='css-mle')
     ArimaToPMML(result, f_name)
     self.assertEqual(self.schema.is_valid(f_name), True)
示例#6
0
 def test_non_seasonal_arima7(self):
     ts_data = self.statsmodels_data_helper.get_non_seasonal_data()
     f_name = 'non_seasonal_arima7.pmml'
     model = ARIMA(ts_data, order=(5, 1, 2))
     result = model.fit(trend='nc', method='mle')
     StatsmodelsToPmml(result, f_name)
     self.assertEqual(self.schema.is_valid(f_name), True)
示例#7
0
def predict_by_samples(data,
                       test_data,
                       train_length,
                       num_sample,
                       output_steps,
                       lag_order=1,
                       if_sample=True):
    warnings.filterwarnings("ignore")
    test_num, data_dim = test_data.shape
    if not if_sample:
        num_sample = data_dim
    #widgets = ['Train: ', Percentage(), ' ', Bar('-'), ' ', ETA()]
    #pbar = ProgressBar(widgets=widgets, maxval=test_data.shape[0]-output_steps).start()
    error_all = []
    index_all = np.zeros([test_num - output_steps, num_sample], dtype=np.int32)
    valid_num = np.zeros(test_num - output_steps, dtype=np.int32)
    real = np.zeros([test_num - output_steps, num_sample])
    predict = np.zeros([test_num - output_steps, num_sample])
    #
    samples = np.arange(data_dim)
    #
    for t in range(test_num - output_steps):
        #pbar.update(t)
        if t % 100 == 0:
            print(t)
        error_index = []
        if if_sample:
            samples = np.random.randint(data_dim, size=num_sample)
        for r in range(num_sample):
            # t: which time slot
            # i: which station
            i = samples[r]
            train_df = data[t:train_length + t, i]
            try:
                results = ARIMA(train_df,
                                order=(lag_order, 0, 1)).fit(trend='nc',
                                                             disp=0)
            except:
                error_index.append(r)
                continue
            #pre, _, _ = results.forecast(output_steps)
            #pre = results.predict(train_length, train_length+output_steps)
            pre = results.predict(train_length, train_length)
            test_real = test_data[t:t + output_steps, i]
            real[t, r] = test_real
            #print(pre)
            predict[t, r] = pre
        index_all[t] = samples
        error_all.append(error_index)
        valid_num[t] = num_sample - len(error_index)
    #pbar.finish()
    return real, predict, index_all, error_all, valid_num
示例#8
0
    def train(self, array_X, array_Y):
        self.train_X = array_X
        self.train_Y = array_Y
        array = numpy.concatenate((numpy.array([array_Y]).T, array_X), axis=1)
        idx = pd.date_range('20130101', periods=48000)
        #xxx= pd.DataFrame(data=numpy.array([array_Y]),index=idx)
        xxx = pd.DataFrame(data=array, index=idx)

        model = ARIMA(endog=xxx, order=(0, 1, 1))
        fit = model.fit()
        res = fit.fittedvalues.values[:, 0]
        res = numpy.hstack((res[0], res))
        return res
示例#9
0
def arima(time_serie, Npt, order, simple_ticker, fit: bool, save: bool, load: bool, path):
    filename = path+'/Resources/TunnedModels/' + simple_ticker + '_arima_2020_07_31.pickle'
    if fit:
        arima_fit = ARIMA(time_serie.values.astype('float'), order).fit(disp=False)
        if save:
            # save the model to disk
            pickle.dump(arima_fit, open(filename, 'wb'))
    elif load:
        # load the model from disk
        arima_fit = pickle.load(open(filename, 'rb'))
    else:
        print("Error: fit and load parameters are both false.")
        sys.exit(-1)
    forecast_arima = [x for x in arima_fit.forecast(Npt)[0]] # [0]= predições
    return pd.Series(forecast_arima)
示例#10
0
    def predict(self, test_X, test_Y):
        predictions = numpy.empty(0)

        array_train = numpy.concatenate(
            (numpy.array([self.train_Y]).T, self.train_X), axis=1)
        array_test = numpy.concatenate((numpy.array([test_Y]).T, test_X),
                                       axis=1)

        for t in range(0, test_Y.shape[0]):
            array = numpy.vstack((array_train, array_test[:t]))
            model = ARIMA(endog=pd.DataFrame(data=array))
            fit = model.fit()
            lag = fit.k_ar
            pred = fit.forecast(array[-lag:], 1)[0]
            predictions = numpy.append(predictions, pred[0])

        return predictions
示例#11
0
 def build_model(self):
     """Build ARIMA model with 3 hyperparameters
     See https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
     for detailed information
     """
     self.p = self.para['p']
     self.d = self.para['d']
     self.q = self.para['q']
     self.model = ARIMA(self.train,
                        order=(self.p, self.d, self.q),
                        exog=self.exog_train)