def test_simulate():
    # Test for simulation of new time-series
    from scipy.signal import lfilter

    # Common parameters
    nsimulations = 10
    sigma2 = 2
    measurement_shocks = np.zeros(nsimulations)
    state_shocks = np.random.normal(scale=sigma2**0.5, size=nsimulations)

    # Random walk model, so simulated series is just the cumulative sum of
    # the shocks
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=measurement_shocks,
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[0, np.cumsum(state_shocks)[:-1]]

    assert_allclose(actual, desired)

    # Local level model, so simulated series is just the cumulative sum of
    # the shocks plus the measurement shock
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=np.ones(nsimulations),
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[1, np.cumsum(state_shocks)[:-1] + 1]

    assert_allclose(actual, desired)

    # Local level-like model with observation and state intercepts, so
    # simulated series is just the cumulative sum of the shocks minus the state
    # intercept, plus the observation intercept and the measurement shock
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['obs_intercept', 0, 0] = 5.
    mod['design', 0, 0] = 1.
    mod['state_intercept', 0, 0] = -2.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=np.ones(nsimulations),
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[1 + 5, np.cumsum(state_shocks - 2)[:-1] + 1 + 5]

    assert_allclose(actual, desired)

    # Model with time-varying observation intercept
    mod = KalmanFilter(k_endog=1, k_states=1, nobs=10)
    mod['obs_intercept'] = (np.arange(10) * 1.).reshape(1, 10)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(nsimulations,
                          measurement_shocks=measurement_shocks,
                          state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[0, np.cumsum(state_shocks)[:-1] + np.arange(1, 10)]

    assert_allclose(actual, desired)

    # Model with time-varying observation intercept, check that error is raised
    # if more simulations are requested than are nobs.
    mod = KalmanFilter(k_endog=1, k_states=1, nobs=10)
    mod['obs_intercept'] = (np.arange(10) * 1.).reshape(1, 10)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.
    assert_raises(ValueError, mod.simulate, nsimulations + 1,
                  measurement_shocks, state_shocks)

    # ARMA(1,1): phi = [0.1], theta = [0.5], sigma^2 = 2
    phi = 0.1
    theta = 0.5
    mod = sarimax.SARIMAX([0], order=(1, 0, 1))
    mod.update(np.r_[phi, theta, sigma2])

    actual = mod.ssm.simulate(nsimulations,
                              measurement_shocks=measurement_shocks,
                              state_shocks=state_shocks,
                              initial_state=np.zeros(
                                  mod.k_states))[0].squeeze()
    desired = lfilter([1, theta], [1, -phi], np.r_[0, state_shocks[:-1]])

    assert_allclose(actual, desired)

    # SARIMAX(1,0,1)x(1,0,1,4), this time using the results object call
    mod = sarimax.SARIMAX([0.1, 0.5, -0.2],
                          order=(1, 0, 1),
                          seasonal_order=(1, 0, 1, 4))
    res = mod.filter([0.1, 0.5, 0.2, -0.3, 1])

    actual = res.simulate(nsimulations,
                          measurement_shocks=measurement_shocks,
                          state_shocks=state_shocks,
                          initial_state=np.zeros(mod.k_states))
    desired = lfilter(res.polynomial_reduced_ma, res.polynomial_reduced_ar,
                      np.r_[0, state_shocks[:-1]])

    assert_allclose(actual, desired)
示例#2
0
#If we can only observe y, what can we say about α?
#This acts like a filter trying to recover a signal by filtering out noise.
#A linear filter.
# a is the state and y is the observation (equations)
import statsmodels.tsa.statespace.kalman_filter
from statsmodels.tsa.statespace.kalman_filter import KalmanFilter

kf = KalmanFilter(1,1)

kf.obs_cov = np.array([sigma_e]) # H
kf.state_cov = np.array([sigma_h])  # Q
kf.design = np.array([1.0])  # Z
kf.transition = np.array([1.0])  # T
kf.selection = np.array([1.0])  # R

ys, ah = kf.simulate(100)














def test_simulate():
    # Test for simulation of new time-series
    from scipy.signal import lfilter

    # Common parameters
    nsimulations = 10
    sigma2 = 2
    measurement_shocks = np.zeros(nsimulations)
    state_shocks = np.random.normal(scale=sigma2**0.5, size=nsimulations)

    # Random walk model, so simulated series is just the cumulative sum of
    # the shocks
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(
        nsimulations, measurement_shocks=measurement_shocks,
        state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[0, np.cumsum(state_shocks)[:-1]]

    assert_allclose(actual, desired)

    # Local level model, so simulated series is just the cumulative sum of
    # the shocks plus the measurement shock
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(
        nsimulations, measurement_shocks=np.ones(nsimulations),
        state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[1, np.cumsum(state_shocks)[:-1] + 1]

    assert_allclose(actual, desired)

    # Local level-like model with observation and state intercepts, so
    # simulated series is just the cumulative sum of the shocks minus the state
    # intercept, plus the observation intercept and the measurement shock
    mod = KalmanFilter(k_endog=1, k_states=1)
    mod['obs_intercept', 0, 0] = 5.
    mod['design', 0, 0] = 1.
    mod['state_intercept', 0, 0] = -2.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(
        nsimulations, measurement_shocks=np.ones(nsimulations),
        state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[1 + 5, np.cumsum(state_shocks - 2)[:-1] + 1 + 5]

    assert_allclose(actual, desired)

    # Model with time-varying observation intercept
    mod = KalmanFilter(k_endog=1, k_states=1, nobs=10)
    mod['obs_intercept'] = (np.arange(10)*1.).reshape(1, 10)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.

    actual = mod.simulate(
        nsimulations, measurement_shocks=measurement_shocks,
        state_shocks=state_shocks)[0].squeeze()
    desired = np.r_[0, np.cumsum(state_shocks)[:-1] + np.arange(1, 10)]

    assert_allclose(actual, desired)

    # Model with time-varying observation intercept, check that error is raised
    # if more simulations are requested than are nobs.
    mod = KalmanFilter(k_endog=1, k_states=1, nobs=10)
    mod['obs_intercept'] = (np.arange(10)*1.).reshape(1, 10)
    mod['design', 0, 0] = 1.
    mod['transition', 0, 0] = 1.
    mod['selection', 0, 0] = 1.
    assert_raises(ValueError, mod.simulate, nsimulations+1, measurement_shocks,
                  state_shocks)

    # ARMA(1,1): phi = [0.1], theta = [0.5], sigma^2 = 2
    phi = 0.1
    theta = 0.5
    mod = sarimax.SARIMAX([0], order=(1, 0, 1))
    mod.update(np.r_[phi, theta, sigma2])

    actual = mod.ssm.simulate(
        nsimulations, measurement_shocks=measurement_shocks,
        state_shocks=state_shocks,
        initial_state=np.zeros(mod.k_states))[0].squeeze()
    desired = lfilter([1, theta], [1, -phi], np.r_[0, state_shocks[:-1]])

    assert_allclose(actual, desired)

    # SARIMAX(1,0,1)x(1,0,1,4), this time using the results object call
    mod = sarimax.SARIMAX([0.1, 0.5, -0.2], order=(1, 0, 1),
                          seasonal_order=(1, 0, 1, 4))
    res = mod.filter([0.1, 0.5, 0.2, -0.3, 1])

    actual = res.simulate(
        nsimulations, measurement_shocks=measurement_shocks,
        state_shocks=state_shocks, initial_state=np.zeros(mod.k_states))
    desired = lfilter(
        res.polynomial_reduced_ma, res.polynomial_reduced_ar,
        np.r_[0, state_shocks[:-1]])

    assert_allclose(actual, desired)
示例#4
0
'''
 https://datascienceschool.net/view-notebook/c645d51f308b4047aa78e8b343a2e181/
'''

from statsmodels.tsa.statespace.kalman_filter import KalmanFilter
import numpy as np
import matplotlib.pyplot as plt

model1 = KalmanFilter(k_endog=1,
                      k_states=1,
                      transition=[[1]],
                      selection=[[1]],
                      state_cov=[[10]],
                      design=[[1]],
                      obs_cov=[[100]])

np.random.seed(0)
y1, x1 = model1.simulate(100)

print(x1)
print(y1)

plt.plot(y1, 'r:', label="관측값")
plt.plot(x1, 'g-', label="상태값")
plt.legend()
plt.title("로컬레벨 모형의 시뮬레이션 ($\sigma_w^2 = 10$, $\sigma_v^2 = 100$)")
plt.show()