示例#1
0
def test_ccovf_fft_vs_convolution(demean, adjusted, reset_randomstate):
    x = np.random.normal(size=128)
    y = np.random.normal(size=128)

    F1 = ccovf(x, y, demean=demean, adjusted=adjusted, fft=False)
    F2 = ccovf(x, y, demean=demean, adjusted=adjusted, fft=True)
    assert_almost_equal(F1, F2, decimal=7)
def phase_align(reference, target, roi, res=100):
    '''
    Cross-correlate data within region of interest at a precision of 1./res
    if data is cross-correlated at native resolution (i.e. res=1) this function
    can only achieve integer precision 

    Args:
        reference (1d array/list): signal that won't be shifted
        target (1d array/list): signal to be shifted to reference
        roi (tuple): region of interest to compute chi-squared
        res (int): factor to increase resolution of data via linear interpolation
    
    Returns:
        shift (float): offset between target and reference signal 
    '''
    # convert to int to avoid indexing issues
    ROI = slice(int(roi[0]), int(roi[1]), 1)

    # interpolate data onto a higher resolution grid
    x, r1 = highres(reference[ROI], kind='linear', res=res)
    x, r2 = highres(target[ROI], kind='linear', res=res)

    # subtract mean
    r1 -= r1.mean()
    r2 -= r2.mean()

    # compute cross covariance
    cc = ccovf(r1, r2, demean=False, unbiased=False)

    # determine if shift if positive/negative
    if np.argmax(cc) == 0:
        cc = ccovf(r2, r1, demean=False, unbiased=False)
        mod = -1
    else:
        mod = 1

    # often found this method to be more accurate then the way below
    return np.argmax(cc) * mod * (1. / res)

    # interpolate data onto a higher resolution grid
    x, r1 = highres(reference[ROI], kind='linear', res=res)
    x, r2 = highres(target[ROI], kind='linear', res=res)

    # subtract off mean
    r1 -= r1.mean()
    r1 -= r2.mean()

    # compute the phase-only correlation function
    product = np.fft.fft(r1) * np.fft.fft(r2).conj()
    cc = np.fft.fftshift(np.fft.ifft(product))

    # manipulate the output from np.fft
    l = reference[ROI].shape[0]
    shifts = np.linspace(-0.5 * l, 0.5 * l, l * res)

    # plt.plot(shifts,cc,'k-'); plt.show()
    return shifts[np.argmax(cc.real)]
示例#3
0
matplotlib.rcParams.update({'font.size': 16})


#####################################################################################

# 1D CCF

#####################################################################################

# Load calibrated data
print("Loading data: {0}-imageplane-dynspectrum-calibrated.stokesI.txt".format(src))
dynspec_I = np.loadtxt("{0}-imageplane-dynspectrum-calibrated.stokesI.txt".format(src))

# TODO: Weight the time average by fscrunch, rather than doing a simple mean
pulse1spectra = np.mean(dynspec_I[ccfstart1:ccfstop1+1], 0)
pulse2spectra = np.mean(dynspec_I[ccfstart2:ccfstop2+1], 0)

# CCF calculation for individual bins
print("Computing CCF between user-selected pulse1 and pulse2")

# Calculate the 1D CCF across frequency between the two user-selected time ranges using statsmodels.tsa.stattools.ccovf
ccf = st.ccovf(pulse1spectra, pulse2spectra)

# Set up figure and axes
ccf_fig, ccf_ax = plt.subplots(figsize=(7,7))

# Plot the CCF
ccf_ax.plot(ccf, label='CCF (bins {0}-{1} x {2}-{3})'.format(ccfstart1,ccfstop1,ccfstart2,ccfstop2))
plt.legend()
ccf_fig.savefig("{0}-CCF_bin{1}-{2}x{3}-{4}.png".format(src,ccfstart1,ccfstop1,ccfstart2,ccfstop2), bbox_inches='tight')
示例#4
0
def test_compare_acovf_vs_ccovf(demean, adjusted, fft, reset_randomstate):
    x = np.random.normal(size=128)

    F1 = acovf(x, demean=demean, adjusted=adjusted, fft=fft)
    F2 = ccovf(x, x, demean=demean, adjusted=adjusted, fft=fft)
    assert_almost_equal(F1, F2, decimal=7)