示例#1
0
def test_innovations_algo_rtol():
    ma = np.array([-0.9, 0.5])
    acovf = np.array([1 + (ma ** 2).sum(), ma[0] + ma[1] * ma[0], ma[1]])
    theta, sigma2 = innovations_algo(acovf, nobs=500)
    theta_2, sigma2_2 = innovations_algo(acovf, nobs=500, rtol=1e-8)
    assert_allclose(theta, theta_2)
    assert_allclose(sigma2, sigma2_2)
示例#2
0
def test_innovations_algo_rtol():
    ma = np.array([-0.9, 0.5])
    acovf = np.array([1 + (ma ** 2).sum(), ma[0] + ma[1] * ma[0], ma[1]])
    theta, sigma2 = innovations_algo(acovf, nobs=500)
    theta_2, sigma2_2 = innovations_algo(acovf, nobs=500, rtol=1e-8)
    assert_allclose(theta, theta_2)
    assert_allclose(sigma2, sigma2_2)
示例#3
0
def test_innovations_algo_brockwell_davis():
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    theta, sigma2 = innovations_algo(acovf, nobs=4)
    exp_theta = np.array([[0], [-.4972], [-.6606], [-.7404]])
    assert_allclose(theta, exp_theta, rtol=1e-4)
    assert_allclose(sigma2, [1.81, 1.3625, 1.2155, 1.1436], rtol=1e-4)

    theta, sigma2 = innovations_algo(acovf, nobs=500)
    assert_allclose(theta[-1, 0], ma)
    assert_allclose(sigma2[-1], 1.0)
示例#4
0
def test_innovations_algo_brockwell_davis():
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    theta, sigma2 = innovations_algo(acovf, nobs=4)
    exp_theta = np.array([[0], [-.4972], [-.6606], [-.7404]])
    assert_allclose(theta, exp_theta, rtol=1e-4)
    assert_allclose(sigma2, [1.81, 1.3625, 1.2155, 1.1436], rtol=1e-4)

    theta, sigma2 = innovations_algo(acovf, nobs=500)
    assert_allclose(theta[-1, 0], ma)
    assert_allclose(sigma2[-1], 1.0)
示例#5
0
def test_innovations_algo_filter_kalman_filter(reset_randomstate):
    # Test the innovations algorithm and filter against the Kalman filter
    # for exact likelihood evaluation of an ARMA process
    ar_params = np.array([0.5])
    ma_params = np.array([0.2])
    # TODO could generalize to sigma2 != 1, if desired, after #5324 is merged
    # and there is a sigma2 argument to arma_acovf
    # (but maybe this is not really necessary for the point of this test)
    sigma2 = 1

    endog = np.random.normal(size=10)

    # Innovations algorithm approach
    acovf = arma_acovf(np.r_[1, -ar_params], np.r_[1, ma_params],
                       nobs=len(endog))

    theta, v = innovations_algo(acovf)
    u = innovations_filter(endog, theta)
    llf_obs = -0.5 * u ** 2 / (sigma2 * v) - 0.5 * np.log(2 * np.pi * v)

    # Kalman filter apparoach
    mod = SARIMAX(endog, order=(len(ar_params), 0, len(ma_params)))
    res = mod.filter(np.r_[ar_params, ma_params, sigma2])

    # Test that the two approaches are identical
    atol = 1e-6 if PLATFORM_WIN else 0.0
    assert_allclose(u, res.forecasts_error[0], rtol=1e-6, atol=atol)
    assert_allclose(theta[1:, 0], res.filter_results.kalman_gain[0, 0, :-1],
                    atol=atol)
    assert_allclose(llf_obs, res.llf_obs, atol=atol)
示例#6
0
def test_innovations_algo_filter_kalman_filter(reset_randomstate):
    # Test the innovations algorithm and filter against the Kalman filter
    # for exact likelihood evaluation of an ARMA process
    ar_params = np.array([0.5])
    ma_params = np.array([0.2])
    # TODO could generalize to sigma2 != 1, if desired, after #5324 is merged
    # and there is a sigma2 argument to arma_acovf
    # (but maybe this is not really necessary for the point of this test)
    sigma2 = 1

    endog = np.random.normal(size=10)

    # Innovations algorithm approach
    acovf = arma_acovf(np.r_[1, -ar_params], np.r_[1, ma_params],
                       nobs=len(endog))

    theta, v = innovations_algo(acovf)
    u = innovations_filter(endog, theta)
    llf_obs = -0.5 * u**2 / (sigma2 * v) - 0.5 * np.log(2 * np.pi * v)

    # Kalman filter apparoach
    mod = SARIMAX(endog, order=(len(ar_params), 0, len(ma_params)))
    res = mod.filter(np.r_[ar_params, ma_params, sigma2])

    # Test that the two approaches are identical
    atol = 1e-6 if PLATFORM_WIN else 0.0
    assert_allclose(u, res.forecasts_error[0], atol=atol)
    assert_allclose(theta[1:, 0], res.filter_results.kalman_gain[0, 0, :-1],
                    atol=atol)
    assert_allclose(llf_obs, res.llf_obs, atol=atol)
示例#7
0
def test_innovations_errors():
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    with pytest.raises(TypeError):
        innovations_algo(acovf, nobs=2.2)
    with pytest.raises(ValueError):
        innovations_algo(acovf, nobs=-1)
    with pytest.raises(ValueError):
        innovations_algo(np.empty((2, 2)))
    with pytest.raises(TypeError):
        innovations_algo(acovf, rtol='none')
示例#8
0
def test_innovations_errors():
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    with pytest.raises(ValueError):
        innovations_algo(acovf, nobs=2.2)
    with pytest.raises(ValueError):
        innovations_algo(acovf, nobs=-1)
    with pytest.raises(ValueError):
        innovations_algo(np.empty((2, 2)))
    with pytest.raises(ValueError):
        innovations_algo(acovf, rtol='none')
示例#9
0
def test_innovations_filter_errors():
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    theta, _ = innovations_algo(acovf, nobs=4)
    with pytest.raises(ValueError):
        innovations_filter(np.empty((2, 2)), theta)
    with pytest.raises(ValueError):
        innovations_filter(np.empty(4), theta[:-1])
    with pytest.raises(ValueError):
        innovations_filter(pd.DataFrame(np.empty((1, 4))), theta)
示例#10
0
def test_innovations_filter_pandas(reset_randomstate):
    ma = np.array([-0.9, 0.5])
    acovf = np.array([1 + (ma**2).sum(), ma[0] + ma[1] * ma[0], ma[1]])
    theta, _ = innovations_algo(acovf, nobs=10)
    endog = np.random.randn(10)
    endog_pd = pd.Series(endog, index=pd.date_range('2000-01-01', periods=10))
    resid = innovations_filter(endog, theta)
    resid_pd = innovations_filter(endog_pd, theta)
    assert_allclose(resid, resid_pd.values)
    assert_index_equal(endog_pd.index, resid_pd.index)
示例#11
0
def test_innovations_filter_errors():
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    theta, _ = innovations_algo(acovf, nobs=4)
    with pytest.raises(ValueError):
        innovations_filter(np.empty((2, 2)), theta)
    with pytest.raises(ValueError):
        innovations_filter(np.empty(4), theta[:-1])
    with pytest.raises(ValueError):
        innovations_filter(pd.DataFrame(np.empty((1, 4))), theta)
示例#12
0
def test_innovations_filter_pandas(reset_randomstate):
    ma = np.array([-0.9, 0.5])
    acovf = np.array([1 + (ma ** 2).sum(), ma[0] + ma[1] * ma[0], ma[1]])
    theta, _ = innovations_algo(acovf, nobs=10)
    endog = np.random.randn(10)
    endog_pd = pd.Series(endog,
                         index=pd.date_range('2000-01-01', periods=10))
    resid = innovations_filter(endog, theta)
    resid_pd = innovations_filter(endog_pd, theta)
    assert_allclose(resid, resid_pd.values)
    assert_index_equal(endog_pd.index, resid_pd.index)
示例#13
0
def test_innovations_filter_brockwell_davis(reset_randomstate):
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    theta, _ = innovations_algo(acovf, nobs=4)
    e = np.random.randn(5)
    endog = e[1:] + ma * e[:-1]
    resid = innovations_filter(endog, theta)
    expected = [endog[0]]
    for i in range(1, 4):
        expected.append(endog[i] - theta[i, 0] * expected[-1])
    expected = np.array(expected)
    assert_allclose(resid, expected)
示例#14
0
def test_innovations_filter_brockwell_davis(reset_randomstate):
    ma = -0.9
    acovf = np.array([1 + ma ** 2, ma])
    theta, _ = innovations_algo(acovf, nobs=4)
    e = np.random.randn(5)
    endog = e[1:] + ma * e[:-1]
    resid = innovations_filter(endog, theta)
    expected = [endog[0]]
    for i in range(1, 4):
        expected.append(endog[i] - theta[i, 0] * expected[-1])
    expected = np.array(expected)
    assert_allclose(resid, expected)
示例#15
0
def innovations(endog, ma_order=0, demean=True):
    """
    Estimate MA parameters using innovations algorithm.

    Parameters
    ----------
    endog : array_like or SARIMAXSpecification
        Input time series array, assumed to be stationary.
    ma_order : int, optional
        Maximum moving average order. Default is 0.
    demean : bool, optional
        Whether to estimate and remove the mean from the process prior to
        fitting the moving average coefficients. Default is True.

    Returns
    -------
    parameters : list of SARIMAXParams objects
        List elements correspond to estimates at different `ma_order`. For
        example, parameters[0] is an `SARIMAXParams` instance corresponding to
        `ma_order=0`.
    other_results : Bunch
        Includes one component, `spec`, containing the `SARIMAXSpecification`
        instance corresponding to the input arguments.

    Notes
    -----
    The primary reference is [1]_, section 5.1.3.

    This procedure assumes that the series is stationary.

    References
    ----------
    .. [1] Brockwell, Peter J., and Richard A. Davis. 2016.
       Introduction to Time Series and Forecasting. Springer.
    """
    spec = max_spec = SARIMAXSpecification(endog, ma_order=ma_order)
    endog = max_spec.endog

    if demean:
        endog = endog - endog.mean()

    if not max_spec.is_ma_consecutive:
        raise ValueError('Innovations estimation unavailable for models with'
                         ' seasonal or otherwise non-consecutive MA orders.')

    sample_acovf = acovf(endog, fft=True)
    theta, v = innovations_algo(sample_acovf, nobs=max_spec.ma_order + 1)
    ma_params = [theta[i, :i] for i in range(1, max_spec.ma_order + 1)]
    sigma2 = v

    out = []
    for i in range(max_spec.ma_order + 1):
        spec = SARIMAXSpecification(ma_order=i)
        p = SARIMAXParams(spec=spec)
        if i == 0:
            p.params = sigma2[i]
        else:
            p.params = np.r_[ma_params[i - 1], sigma2[i]]
        out.append(p)

    # Construct other results
    other_results = Bunch({
        'spec': spec,
    })

    return out, other_results