示例#1
0
def test_generator_flow_shuffle():

    generator = PaddedGraphGenerator(graphs=graphs)
    num_epochs_to_check = 5

    def get_batches(seq):
        return [seq[i][0] for i in range(len(seq))]

    def batches_all_equal(batches, other_batches):
        checks = [
            inp.shape == other_inp.shape and np.allclose(inp, other_inp)
            for batch, other_batch in zip(batches, other_batches)
            for inp, other_inp in zip(batch, other_batch)
        ]
        return all(checks)

    def get_next_epoch_batches(seq):
        seq.on_epoch_end()
        return get_batches(seq)

    # shuffle = False
    seq = generator.flow(graphs=[0, 1, 2], batch_size=2, shuffle=False)
    batches = get_batches(seq)
    for _ in range(num_epochs_to_check):
        assert batches_all_equal(batches, get_next_epoch_batches(seq))

    # shuffle = True, fixed seed
    seq = generator.flow(graphs=[0, 1, 2], batch_size=2, shuffle=True, seed=0)
    batches = get_batches(seq)
    at_least_one_different = False
    for _ in range(num_epochs_to_check):
        if not batches_all_equal(batches, get_next_epoch_batches(seq)):
            at_least_one_different = True
    assert at_least_one_different
示例#2
0
def test_generator_flow_StellarGraphs():
    generator = PaddedGraphGenerator(graphs=graphs)
    graph_ilocs = [1, 2, 0]

    seq_1 = generator.flow(graph_ilocs)
    seq_2 = generator.flow([graphs[1], graphs[2], graphs[0]])

    assert all(g1 == g2 for g1, g2 in zip(seq_1.graphs, seq_2.graphs))
示例#3
0
def test_generator_flow_invalid_shape():
    generator = PaddedGraphGenerator(graphs=graphs)

    with pytest.raises(ValueError,
                       match=r"graphs: expected a shape .* found shape \(\)"):
        generator.flow(0)

    with pytest.raises(
            ValueError,
            match=r"graphs: expected a shape .* found shape \(2, 3, 4\)"):
        generator.flow(np.ones((2, 3, 4)))
示例#4
0
def test_generator_flow_incorrect_targets():

    generator = PaddedGraphGenerator(graphs=graphs)

    with pytest.raises(
        ValueError, match="expected targets to be the same length as node_ids,.*1 vs 2"
    ):
        generator.flow(graph_ilocs=[0, 1], targets=np.array([0]))

    with pytest.raises(
        TypeError, match="targets: expected an iterable or None object, found int"
    ):
        generator.flow(graph_ilocs=[0, 1], targets=1)
示例#5
0
def test_generator_flow_StellarGraphs():
    generator = PaddedGraphGenerator(graphs=graphs)
    graph_ilocs = [1, 2, 0]

    seq_1 = generator.flow(graph_ilocs)
    seq_2 = generator.flow([graphs[1], graphs[2], graphs[0]])

    assert len(seq_1) == len(seq_2) == 3

    for (values_1, targets_1), (values_2, targets_2) in zip(seq_1, seq_2):
        assert len(values_1) == len(values_2) == 3
        assert targets_1 is targets_2 is None

        for arr_1, arr_2 in zip(values_1, values_2):
            np.testing.assert_array_equal(arr_1, arr_2)
示例#6
0
def test_generator_flow_no_targets():

    generator = PaddedGraphGenerator(graphs=graphs)

    seq = generator.flow(graphs=[0, 1, 2], batch_size=2)
    assert isinstance(seq, PaddedGraphSequence)

    assert len(seq) == 2  # two batches

    # The first batch should be size 2 and the second batch size 1
    values_0, targets_0 = seq[0]

    assert len(values_0) == 3
    assert values_0[0].shape[0] == 2
    assert values_0[1].shape[0] == 2
    assert values_0[2].shape[0] == 2
    assert targets_0 is None

    values_1, targets_1 = seq[1]

    assert len(values_1) == 3
    assert values_1[0].shape[0] == 1
    assert values_1[1].shape[0] == 1
    assert values_1[2].shape[0] == 1
    assert targets_1 is None
示例#7
0
def test_generator_flow_with_targets():

    generator = PaddedGraphGenerator(graphs=graphs)

    seq = generator.flow(graphs=[1, 2], targets=np.array([0, 1]), batch_size=1)
    assert isinstance(seq, PaddedGraphSequence)

    for batch in seq:
        assert batch[0][0].shape[0] == 1
        assert batch[0][1].shape[0] == 1
        assert batch[0][2].shape[0] == 1
        assert batch[1].shape[0] == 1
示例#8
0
def test_generator_flow_check_padding():

    generator = PaddedGraphGenerator(graphs=graphs)

    seq = generator.flow(graphs=[0, 2], batch_size=2)
    assert isinstance(seq, PaddedGraphSequence)

    assert len(seq) == 1

    # The largest graph has 6 nodes vs 3 for the smallest one.
    # Check that the data matrices have the correct size 6
    batch = seq[0]

    assert batch[0][0].shape == (2, 6, 4)
    assert batch[0][1].shape == (2, 6)
    assert batch[0][2].shape == (2, 6, 6)

    for mask in batch[0][1]:
        assert np.sum(mask) == 6 or np.sum(mask) == 3
示例#9
0
def test_generator_empty():
    graphs = [
        example_graph_random(feature_size=2, n_nodes=4),
        example_graph_random(feature_size=2, node_types=0, edge_types=0),
    ]

    with pytest.raises(
            ValueError,
            match=
            "graphs: expected every graph to be non-empty, found graph with no nodes",
    ):
        generator = PaddedGraphGenerator(graphs=graphs)

    generator = PaddedGraphGenerator(graphs=graphs[:1])
    with pytest.raises(
            ValueError,
            match=
            "graphs: expected every graph to be non-empty, found graph with no nodes",
    ):
        seq = generator.flow(graphs)
示例#10
0
def test_generator_hin():
    graphs_mixed = [
        example_graph_random(feature_size=2, n_nodes=6),
        example_hin_1(is_directed=False),
    ]

    with pytest.raises(
            ValueError,
            match=
            "graphs: expected only graphs with a single node type.*found.*'A', 'B'",
    ):
        generator = PaddedGraphGenerator(graphs=graphs_mixed)

    generator = PaddedGraphGenerator(graphs=graphs_mixed[:1])
    with pytest.raises(
            ValueError,
            match=
            "graphs: expected only graphs with a single node type.*found.*'A', 'B'",
    ):
        seq = generator.flow(graphs_mixed)
示例#11
0
def test_generator_different_feature_numbers():
    graphs_diff_num_features = [
        example_graph_random(feature_size=2, n_nodes=6),
        example_graph_random(feature_size=4, n_nodes=5),
    ]

    with pytest.raises(
            ValueError,
            match=
            "graphs: expected node features for all graph to have same dimensions,.*2.*4",
    ):
        generator = PaddedGraphGenerator(graphs=graphs_diff_num_features)

    generator = PaddedGraphGenerator(graphs=graphs_diff_num_features[:1])
    with pytest.raises(
            ValueError,
            match=
            "graphs: expected node features for all graph to have same dimensions,.*2.*4",
    ):
        seq = generator.flow(graphs_diff_num_features)
示例#12
0
def test_generator_adj_normalisation(symmetric_normalization):

    graph = example_graph(feature_size=4)

    generator = PaddedGraphGenerator(graphs=[graph])
    seq = generator.flow(graphs=[0],
                         symmetric_normalization=symmetric_normalization)

    adj_norm_seq = seq.normalized_adjs[0].todense()

    adj = np.array(graph.to_adjacency_matrix().todense())
    np.fill_diagonal(adj, 1)
    if symmetric_normalization:
        inv_deg = np.diag(np.sqrt(1.0 / adj.sum(axis=1)))
        adj_norm = inv_deg.dot(adj).dot(inv_deg)
    else:
        inv_deg = np.diag(1.0 / adj.sum(axis=1))
        adj_norm = inv_deg.dot(adj)

    assert np.allclose(adj_norm_seq, adj_norm)
示例#13
0
def test_generator_flow_no_targets():

    generator = PaddedGraphGenerator(graphs=graphs)

    seq = generator.flow(graph_ilocs=[0, 1, 2], batch_size=2)
    assert isinstance(seq, PaddedGraphSequence)

    assert len(seq) == 2  # two batches

    # The first batch should be size 2 and the second batch size 1
    batch_0 = seq[0]
    assert batch_0[0][0].shape[0] == 2
    assert batch_0[0][1].shape[0] == 2
    assert batch_0[0][2].shape[0] == 2
    assert batch_0[1] is None

    batch_1 = seq[1]
    assert batch_1[0][0].shape[0] == 1
    assert batch_1[0][1].shape[0] == 1
    assert batch_1[0][2].shape[0] == 1
    assert batch_1[1] is None
示例#14
0
def test_generator_pairs(use_targets, use_ilocs):
    generator = PaddedGraphGenerator(graphs=graphs)

    targets = [12, 34, 56] if use_targets else None
    ilocs = [(1, 0), (0, 2), (2, 1)]
    input = ilocs if use_ilocs else [[graphs[x] for x in pair]
                                     for pair in ilocs]

    seq = generator.flow(input, targets=targets, batch_size=2)

    assert len(seq) == 2

    values_0, targets_0 = seq[0]
    assert len(values_0) == 6
    assert values_0[0].shape == (2, 6, 4)
    assert values_0[3].shape == (2, 6, 4)
    np.testing.assert_array_equal(values_0[1], [_mask(5, 6), _mask(6, 6)])
    np.testing.assert_array_equal(values_0[4], [_mask(6, 6), _mask(3, 6)])
    assert values_0[2].shape == (2, 6, 6)
    assert values_0[5].shape == (2, 6, 6)
    if use_targets:
        np.testing.assert_array_equal(targets_0, [12, 34])
    else:
        assert targets_0 is None

    values_1, targets_1 = seq[1]
    assert len(values_1) == 6
    assert values_1[0].shape == (1, 5, 4)
    assert values_1[3].shape == (1, 5, 4)
    np.testing.assert_array_equal(values_1[1], [_mask(3, 5)])
    np.testing.assert_array_equal(values_1[4], [_mask(5, 5)])
    assert values_1[2].shape == (1, 5, 5)
    assert values_1[5].shape == (1, 5, 5)
    if use_targets:
        np.testing.assert_array_equal(targets_1, [56])
    else:
        assert targets_1 is None