meme_em['niters'] = start.niters meme_em['em_time'] = start.em_time meme_em['cons'] = start.cons_after_em meme_em['nsites'] = start.nsites meme_em['sig'] = start.sig logging.info( '%s: cons0=%20s; nsites0=%3d; niters=%4d; elapsed=%7.1fs; per iteration=%6.2fs; cons=%20s; nsites0=%3d; sig=%e', data_set, start.cons0, start.nsites0, start.niters, start.em_time, start.em_time / start.niters, start.cons, start.nsites, start.sig ) meme_em.append() h5file.close() # Close (and flush) the HDF5 file if '__main__' == __name__: # # parse options # parser = OptionParser() test_data.add_options(parser) stempy.add_options(parser) options, args = parser.parse_args() usage = 'USAGE: %s <options> <h5 file>' % sys.argv[0] if len(args) != 1: raise RuntimeError(usage) if len(args) < 1: raise RuntimeError(usage) filename = args[0] run(options)
def add_options(options): stempy.add_options(options) meme.add_options(options)
def time_per_iteration_per_base(timings): return timings['duration'] / timings['niters'] / test_data.get_num_w_mers(timings['dataset'], len(timings['seed'])) if '__main__' == __name__: def add_options(parser): parser.add_option("-f", "--force", action="store_true", help="Always run even if already have results.") # # parse options # options, args = stempy.parse_options( lambda parser: (add_options(parser), stempy.add_options( parser), test_data.add_options(parser)) ) if len(args) != 0: raise RuntimeError('USAGE: %s <options>', sys.argv[0]) run(options) # # Slice and dice data # h5file = tables.openFile(filename) timings_table = h5file.root.EtaStability.timings nsite_values = list(set(row['nsites'] for row in timings_table)) nsite_values.sort() time_per_iteration_per_base = [
map(suite_for_name, suite_names) # # Parse the options # from optparse import OptionParser option_parser = OptionParser() option_parser.add_option( "--num-threads", dest="num_threads", default=3, type='int', help="Number of threads to run jobs on." ) option_parser.add_option("--data-sets", action="append") stem.add_options(option_parser) meme.add_options(option_parser) options = stem.parse_options(option_parser=option_parser) stem.turn_on_google_profiling_if_asked_for(options) # for each method and suite for method_name in method_names: for suite_name in suite_names: suite = suite_for_name(suite_name) method = method_for_name(method_name) predictions_by_dataset = [] import cookbook.function_as_task as F def do_work(task):
def add_options(option_parser): stem.add_options(option_parser) meme.add_options(option_parser)