def create(self, state):
     """ Create the Markov chain itself. We use the parameter instead of the attribute so we can compute the matrix for different states """
     # Separete the letters considering the letter and the symbol as a unique state:
     # So from "88,a,b," we get: '8' '8,' 'a,' 'b,'
     try:
         # This is a first order markov model. Each individual object (letter, number, etc.) is a state
         separated_letters = list(state)
     except AttributeError:
         print_error('There is no state yet')
         return False
     # Generate the MC
     self.init_vector, self.matrix = mc.maximum_likelihood_probabilities(separated_letters, order=1)
示例#2
0
 def create(self, state):
     """ Create the Markov chain itself. We use the parameter instead of the attribute so we can compute the matrix for different states """
     # Separete the letters considering the letter and the symbol as a unique state:
     # So from "88,a,b," we get: '8' '8,' 'a,' 'b,'
     try:
         # This is a first order markov model. Each individual object (letter, number, etc.) is a state
         separated_letters = list(state)
     except AttributeError:
         print_error('There is no state yet')
         return False
     # Generate the MC
     self.init_vector, self.matrix = mc.maximum_likelihood_probabilities(separated_letters, order=1)