def peakscale(): """ Scale the selected traces in the currently active channel to their mean peak amplitude. """ # Measure baseline in selected traces base = [] for i in stf.get_selected_indices(): stf.set_trace(i) base.append(stf.get_base()) # Subtract baseline from selected traces stf.subtract_base() # Measure peak amplitudes in baseline-subtracted traces stf.select_all() peak = [] for i in stf.get_selected_indices(): stf.set_trace(i) peak.append(stf.get_peak()) # Calculate scale factor to make peak equal to the mean peak amplitude scale_factor = peak / np.mean(peak) # Scale the traces and apply offset equal to the mean baseline scaled_traces = [ stf.get_trace(i) / scale_factor[i] + np.mean(base) for i in stf.get_selected_indices() ] # Close window of baseline-subtracted traces stf.close_this() return stf.new_window_list(scaled_traces)
def peakalign(): """ Shift the selected traces in the currently active channel to align the peaks. """ # Measure peak indices in the selected traces pidx = [] for i in stf.get_selected_indices(): stf.set_trace(i) pidx.append(stf.peak_index()) # Find the earliest peak pref = min(pidx) # Align the traces j = 0 shifted_traces = [] for i in stf.get_selected_indices(): stf.set_trace(i) shift = int(pref - pidx[j]) shifted_traces.append(np.roll(stf.get_trace(), shift)) j += 1 return stf.new_window_list(shifted_traces)
def normalize(): """ Normalize to the peak amplitude of the selected trace and scale all other traces in the currently active channel by the same factor. Ensure that you subtract the baseline before normalizing """ # Find index of the selected trace idx = stf.get_selected_indices() if len(idx) > 1: raise ValueError('More than one trace was selected') elif len(idx) < 1: raise ValueError('Select one trace to subtract from the others') # Measure peak amplitude in the selected trace stf.set_trace(idx[0]) refval = np.abs(stf.get_peak()) # Apply normalization scaled_traces = [ stf.get_trace(i) / refval for i in range(stf.get_size_channel()) ] return stf.new_window_list(scaled_traces)
def risealign(): """ Shift the selected traces in the currently active channel to align to the rise. """ # Measure peak indices in the selected traces rtidx = [] for i in stf.get_selected_indices(): stf.set_trace(i) rtidx.append(stf.rtlow_index()) # Find the earliest peak rtref = min(rtidx) # Align the traces j = 0 shifted_traces = [] for i in stf.get_selected_indices(): stf.set_trace(i) shift = int(round(rtref - rtidx[j])) shifted_traces.append(np.roll(stf.get_trace(), shift)) j += 1 return stf.new_window_list(shifted_traces)
def plot_traces(plotwindow=None, ichannel=0, vchannel=1): """ Show traces in a figure Parameters ---------- plotwindow : (float, float), optional Plot window (in ms from beginning of trace) None for whole trace. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 1) ax_currents = stfio_plot.StandardAxis( fig, gs[:3, 0], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis( fig, gs[3:, 0], hasx=False, hasy=False, sharex=ax_currents) if plotwindow is not None: istart = int(plotwindow[0]/dt) istop = int(plotwindow[1]/dt) else: istart = 0 istop = None for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace()[istart:istop] ax_currents.plot(np.arange(len(trace))*dt, trace) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace()[istart:istop] ax_voltages.plot(np.arange(len(trace))*dt, trace) # Reset active channel stf.set_channel(ichannel) stfio_plot.plot_scalebars( ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars( ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1))
def find_sample_points_of_detected_events(whole_trace_file, extracted_events_file, sweep_num): """takes the window of detected events from stimfit and, for each events, runs through the full trace to pull out time (in samples) of event """ #open and load trace from whole file stf.file_open(whole_trace_file) stf.set_trace(sweep_num) whole_trace = stf.get_trace() sampling_interval = stf.get_sampling_interval() #open extracted events file stf.file_open(extracted_events_file) time_points = [] for trace in range(stf.get_size_channel()): stf.set_trace(trace) trace_to_search = stf.get_trace(trace) # run find trace with updated search index # start at sample = 0 for first run through if len(time_points) == 0: sample_start = 0 else: sample_start = int(time_points[len(time_points) - 1] / sampling_interval) output_index = sub_func_find_trace(trace_to_search, whole_trace, sample_start) time_point = output_index * sampling_interval time_points.append(time_point) return (time_points)
def jjm_count(start, delta, threshold=0, up=True, trace=None, mark=True): """ Counts the number of events (e.g action potentials (AP)) in the current trace. Arguments: start -- starting time (in ms) to look for events. delta -- time interval (in ms) to look for events. threshold -- (optional) detection threshold (default = 0). up -- (optional) True (default) will look for upward events, False downwards. trace -- (optional) zero-based index of the trace in the current channel, if None, the current trace is selected. mark -- (optional) if True (default), set a mark at the point of threshold crossing Returns: An integer with the number of events. Examples: count_events(500,1000) returns the number of events found between t=500 ms and t=1500 ms above 0 in the current trace and shows a stf marker. count_events(500,1000,0,False,-10,i) returns the number of events found below -10 in the trace i and shows the corresponding stf markers. """ # sets the current trace or the one given in trace. if trace is None: sweep = stf.get_trace_index() else: if type(trace) !=int: print "trace argument admits only integers" return False sweep = trace # set the trace described in sweep stf.set_trace(sweep) # transform time into sampling points dt = stf.get_sampling_interval() pstart = int( round(start/dt) ) pdelta = int( round(delta/dt) ) # select the section of interest within the trace selection = stf.get_trace()[pstart:(pstart+pdelta)] # algorithm to detect events EventCounter,i = 0,0 # set counter and index to zero # list of sample points sample_points = [] # choose comparator according to direction: if up: comp = lambda a, b: a > b else: comp = lambda a, b: a < b # run the loop while i<len(selection): if comp(selection[i],threshold): EventCounter +=1 if mark: sample_point = pstart+i; sample_points.append(sample_point); stf.set_marker(pstart+i, selection[i]) while i<len(selection) and comp(selection[i],threshold): i+=1 # skip values if index in bounds AND until the value is below/above threshold again else: i+=1 time_points = [sample_point*dt for sample_point in sample_points]; return (EventCounter, sample_points, time_points)
def subtract_base(): """ """ subtracted_traces = [] for i in range(stf.get_size_channel()): stf.set_trace(i) subtracted_traces.append(stf.get_trace() - stf.get_base()) stf.new_window_list(subtracted_traces) return
def yvalue(origin, interval): stf.set_fit_start(origin, True) stf.set_fit_end(origin + interval, True) stf.measure() x = int(stf.get_fit_end(False)) y = [] for i in range(stf.get_size_channel()): stf.set_trace(i) y.append(stf.get_trace(i)[x]) return y
def analyze_file(baseline_start, baseline_end, cap_trans_start, cap_trans_end, amplitude, EPSC1_s, EPSC1_e, EPSC2_s, EPSC2_e, sweep_start, sweep_end): """inputs: (baseline_start, baseline_end, cap_trans_start, cap_trans_end, amplitude, EPSC1_s, EPSC1_e, EPSC2_s, EPSC2_e, sweep_start, sweep_end) output: numpy array where 1st column is capacitance transient amplitude, 2nd is series resistance, 3rd is 1st EPSC, 4th is 2nd EPCSC also writes output to .csv file""" num_sweeps = stf.get_size_channel() print('there are') print(num_sweeps) print('sweeps in recording') print('analyzing sweeps') print(sweep_start) print('to') print(sweep_end) sweeps_to_analyze = sweep_end - sweep_start #create array for results data_array = np.zeros((sweeps_to_analyze + 1, 4)) y = 0 for x in range(sweep_start - 1, sweep_end): #moves to next trace stf.set_trace(x) [cap_trans_amplitude, series_resistance] = jjm_resistance(baseline_start, baseline_end, cap_trans_start, cap_trans_end, amplitude) data_array[y][0] = cap_trans_amplitude data_array[y][1] = series_resistance EPSC_1 = jjm_peak(baseline_start, baseline_end, EPSC1_s, EPSC1_e) data_array[y][2] = EPSC_1 EPSC_2 = jjm_peak(baseline_start, baseline_end, EPSC2_s, EPSC2_e) data_array[y][3] = EPSC_2 pp_40 = float(float(EPSC_2) / float(EPSC_1)) y += 1 #print first few entries to check accuracy print(data_array[:3]) #make csv file with data file_name = stf.get_filename() #expt = file_name[-12:].rstrip('.abf'); np.savetxt(file_name + '_stimfitanalysis.csv', data_array, delimiter=',', newline='\n') return (data_array)
def get_time_points(self): #need to get specified sweep of the whole trace to an array stf.file_open(self.whole_trace_file) stf.set_trace(self.sweep_number) trace_array = stf.get_trace() #runs program to find sample indicies of selected EPSCs and converts to times stf.file_open(self.event_file) event_samples_list = find_sample_points_of_detected_events(trace_array) sampling_interval = stf.get_sampling_interval() event_times_list = [(sample * sampling_interval) for sample in event_samples_list] return (event_times_list)
def get_amplitude(base, peak, delta, trace=None): """ Calculates the amplitude deviation (peak-base) in units of the Y-axis Arguments: base -- Starting point (in ms) of the baseline cursor. peak -- Starting point (in ms) of the peak cursor. delta -- Time interval to calculate baseline/find the peak. trace -- Zero-based index of the trace to be processed, if None then current trace is computed. Returns: A float with the variation of the amplitude. False if Example: get_amplitude(980,1005,10,i) returns the variation of the Y unit of the trace i between peak value (10050+10) msec and baseline (980+10) msec """ # sets the current trace or the one given in trace if trace is None: sweep = stf.get_trace_index() else: if type(trace) != int: print('trace argument admits only intergers') return False sweep = trace # set base cursors: if not(stf.set_base_start(base, True)): return False # out-of range if not(stf.set_base_end(base+delta, True)): return False # set peak cursors: if not(stf.set_peak_start(peak, True)): return False # out-of range if not(stf.set_peak_end(peak+delta, True)): return False # update measurements stf.set_trace(sweep) amplitude = stf.get_peak()-stf.get_base() return amplitude
def get_amplitude(base, peak, delta, trace=None): """ Calculates the amplitude deviation (peak-base) in units of the Y-axis Arguments: base -- Starting point (in ms) of the baseline cursor. peak -- Starting point (in ms) of the peak cursor. delta -- Time interval to calculate baseline/find the peak. trace -- Zero-based index of the trace to be processed, if None then current trace is computed. Returns: A float with the variation of the amplitude. False if Example: get_amplitude(980,1005,10,i) returns the variation of the Y unit of the trace i between peak value (10050+10) msec and baseline (980+10) msec """ # sets the current trace or the one given in trace if trace is None: sweep = stf.get_trace_index() else: if type(trace) != int: print('trace argument admits only intergers') return False sweep = trace # set base cursors: if not (stf.set_base_start(base, True)): return False # out-of range if not (stf.set_base_end(base + delta, True)): return False # set peak cursors: if not (stf.set_peak_start(peak, True)): return False # out-of range if not (stf.set_peak_end(peak + delta, True)): return False # update measurements stf.set_trace(sweep) amplitude = stf.get_peak() - stf.get_base() return amplitude
def return_base_for_file(start_sweep, end_sweep): #dict_to_return = {} baselines = [] for sweep in range(start_sweep, end_sweep): stf.set_trace(sweep) stf.set_base_start(100, is_time=True) stf.set_base_end(125, is_time=True) baselines.append(stf.get_base()) file_baseline = np.mean(baselines) #dict_to_return[stf.get_filename()] = file_baseline #df_out = pd.DataFrame(dict_to_return) #file_name = stf.get_filename() #df_out.to_excel('/Users/johnmarshall/Documents/Analysis/eCB_paper/'+str(file_name)+'holding_current.xlsx') return (file_baseline)
def batch_integration(): """ Perform batch integration between the decay/fit cursors of all traces in the active window """ n = int(stf.get_fit_end() + 1 - stf.get_fit_start()) x = [i * stf.get_sampling_interval() for i in range(n)] dictlist = [] for i in range(stf.get_size_channel()): stf.set_trace(i) y = stf.get_trace()[int(stf.get_fit_start()):int(stf.get_fit_end() + 1)] auc = np.trapz(y - stf.get_base(), x) dictlist += [("%i" % (i + 1), auc)] retval = dict(dictlist) stf.show_table(retval, "Area Under Curve") stf.set_trace(0) return
def get_amplitude_select_NMDA(amplithresh): stf.unselect_all() stf.set_peak_direction('both') # total number of traces traces = stf.get_size_channel() selectedtraces, i = 0, 0 while i < traces: stf.set_trace(i) amplitude = stf.get_peak() - stf.get_base() if amplitude < amplithresh and amplitude > 0: # print(i) stf.select_trace(i) i += 1 selectedtraces += 1 else: i += 1 return selectedtraces
def compile_amplitudes_in_trace(): # for each trace in file run find_baseline_amplitudes output_array = np.array(['baseline', 'peak', 'peak_from_baseline']) for trace in range(stf.get_size_channel()): stf.set_trace(trace) fba_output = find_baseline_amplitude(10) output_array = np.vstack([output_array, fba_output]) output_df = pd.DataFrame(output_array[1:], columns=output_array[0], dtype=float) output_df.to_excel(str(stf.get_filename()[-40:-3]) + '.xlsx') return (output_df)
def fit_experiment(params, pulse_length, function_to_fit): num_sweeps = stf.get_size_channel() stf.set_channel(0) stf.set_trace(0) #jjm_analysis.set_params(params); #stf.measure(); #this is in samples #peak_index = stf.peak_index(); #stf.set_fit_start(peak_index, is_time=False); #fit_start_time = peak_index*stf.get_sampling_interval(); #stf.set_fit_end(fit_start_time+pulse_length-(10*stf.get_sampling_interval()), is_time=True); #fit_func = stf.leastsq(function_to_fit); #fit_func['Baseline(pA)']=stf.get_base(); #fit_df = pd.DataFrame(fit_func, index=[0]); fits = [] traces = [] for x in range(0, num_sweeps): stf.set_trace(x) jjm_analysis.set_params(params) stf.measure() #this is in samples peak_index = stf.peak_index() stf.set_fit_start(peak_index, is_time=False) fit_start_time = peak_index * stf.get_sampling_interval() stf.set_fit_end(fit_start_time + pulse_length - (10 * stf.get_sampling_interval()), is_time=True) sweep_fit = stf.leastsq(function_to_fit) sweep_fit['Baseline(pA)'] = stf.get_base() fits.append(sweep_fit) traces.append(x) fit_df = pd.DataFrame(fits) return (fit_df)
def scan_through_train(start_params, train_increment, num_stims, train_trace): """scans through a tran of length "num_stims" in time increments of "train_increment", saves peak amplitudes to an array peak_values (1st output) and sweep segments of peak regions for viewing are in peak_arrays""" stf.set_trace(train_trace) baseline_s = start_params[0] baseline_e = start_params[1] params_ = start_params len_trace_in_samples = len(stf.get_trace(train_trace)) peak_values = np.zeros(num_stims) len_peak_region_in_samples = round( (start_params[3] - start_params[2]) / stf.get_sampling_interval()) peak_arrays = np.zeros((num_stims, (len_peak_region_in_samples))) stim_count = 1 while stim_count <= num_stims: peak_start = params_[2] peak_end = params_[3] print(peak_start, peak_end) peak = jjm_peak(baseline_s, baseline_e, peak_start, peak_end) print(peak) peak_values[stim_count - 1] = peak peak_region_slice = slice_peak_region(params_, train_trace) peak_arrays[stim_count - 1] = peak_region_slice params_ = increment_peak(params_, True, train_increment) stim_count += 1 return (peak_values, peak_arrays)
def return_holding_current(selected_wb, raw_wb): wb_ = xlrd.open_workbook(selected_wb) sheets = [ str(sheet.name) for sheet in wb_.sheets() if 'normalized' in str(sheet.name) ] sheets_to_load_from_raw = [ sheet.strip('normalized') + 'iled_files' for sheet in sheets ] wb_raw = xlrd.open_workbook(raw_wb) raw_sheets = [ str(sheet.name) for sheet in wb_raw.sheets() if 'compiled_files' in str(sheet.name) ] baseline_files = [] exp_files = [] for raw_sheet in raw_sheets: try: df = pd.read_excel(wb_raw, engine='xlrd', sheetname=str(raw_sheet), index_col=[0, 1]) files_in_experiment = df.index.levels[0].values[:2] baseline_files.append(files_in_experiment[0]) exp_files.append(files_in_experiment[1]) except: pass print(baseline_files) baseline_files_to_load = [] exp_files_to_load = [] rootsearchdir = '/Users/johnmarshall/Documents/Analysis/RecordingData/' for fname, efname in zip(baseline_files, exp_files): try: if 'TSeries' in fname: dir_data = search_dir_iterative_for_extension_tupleoutput( rootsearchdir, str(fname + 'vrecd_loaded.csv')) else: dir_data = search_dir_iterative_for_extension_tupleoutput( rootsearchdir, fname) baseline_files_to_load.append(dir_data[1][1] + '/' + dir_data[1][0]) dir_data = search_dir_iterative_for_extension_tupleoutput( rootsearchdir, efname) exp_files_to_load.append(dir_data[1][1] + '/' + dir_data[1][0]) except IndexError: print('could not find:', fname) pass print(baseline_files_to_load) dict_to_return = {} holding_current_time_series = {} for f, ef in zip(baseline_files_to_load, exp_files_to_load): currents = [] print(f) if f.endswith('.abf'): stf.file_open(f) else: if 'TSeries' in f: sweeps_compiled_from_pv_tseries = pv.import_t_series_episodic( f.strip('vrecd_loaded.csv')) pv.plot_episodic_array(sweeps_compiled_from_pv_tseries) baselines = [] for sweep in range((stf.get_size_channel() - 30), stf.get_size_channel()): stf.set_trace(sweep) stf.set_base_start(100, is_time=True) stf.set_base_end(100, is_time=True) baselines.append(stf.get_base()) file_baseline = np.mean(baselines) currents.append(file_baseline) holding_current_time_series[f] = baselines stf.file_open(ef) baselines = [] for sweep in range((stf.get_size_channel() - 15), stf.get_size_channel()): stf.set_trace(sweep) stf.set_base_start(100, is_time=True) stf.set_base_end(100, is_time=True) baselines.append(stf.get_base()) file_baseline = np.mean(baselines) currents.append(file_baseline) dict_to_return[f] = currents df_out = pd.DataFrame(dict_to_return) time_series_df = pd.DataFrame(holding_current_time_series) df_out.to_excel( '/Users/johnmarshall/Documents/Analysis/eCB_paper/holding_current.xlsx' ) time_series_df.to_excel( '/Users/johnmarshall/Documents/Analysis/eCB_paper/holding_current_time_series.xlsx' ) return (df_out)
def count_events(start, delta, threshold=0, up=True, trace=None, mark=True): """ Counts the number of events (e.g action potentials (AP)) in the current trace. Arguments: start -- starting time (in ms) to look for events. delta -- time interval (in ms) to look for events. threshold -- (optional) detection threshold (default = 0). up -- (optional) True (default) will look for upward events, False downwards. trace -- (optional) zero-based index of the trace in the current channel, if None, the current trace is selected. mark -- (optional) if True (default), set a mark at the point of threshold crossing Returns: An integer with the number of events. Examples: count_events(500,1000) returns the number of events found between t=500 ms and t=1500 ms above 0 in the current trace and shows a stf marker. count_events(500,1000,0,False,-10,i) returns the number of events found below -10 in the trace i and shows the corresponding stf markers. """ # sets the current trace or the one given in trace. if trace is None: sweep = stf.get_trace_index() else: if type(trace) !=int: print('trace argument admits only integers') return False sweep = trace # set the trace described in sweep stf.set_trace(sweep) # transform time into sampling points dt = stf.get_sampling_interval() pstart = int( round(start/dt) ) pdelta = int( round(delta/dt) ) # select the section of interest within the trace selection = stf.get_trace()[pstart:(pstart+pdelta)] # algorithm to detect events event_counter, i = 0, 0 # set counter and index to zero # choose comparator according to direction: if up: comp = lambda a, b: a > b else: comp = lambda a, b: a < b # run the loop while i < len(selection): if comp(selection[i], threshold): event_counter += 1 if mark: stf.set_marker(pstart+i, selection[i]) while i < len(selection) and comp(selection[i], threshold): i += 1 # skip until value is below/above threshold else: i += 1 return event_counter
def loadmat(): """ Load electrophysiology recordings from ephysIO HDF5-based Matlab v7.3 (.mat) files """ # Import required modules for file IO from Tkinter import Tk import tkFileDialog from gc import collect # Use file open dialog to obtain file path root = Tk() opt = dict(defaultextension='.mat', filetypes=[('MATLAB v7.3 (HDF5) file', '*.mat'), ('All files', '*.*')]) if 'loadcwd' not in globals(): global loadcwd else: opt['initialdir'] = loadcwd filepath = tkFileDialog.askopenfilename(**opt) root.withdraw() if filepath != '': # Move to file directory and check file version loadcwd = filepath.rsplit('/', 1)[0] from os import chdir print filepath chdir(loadcwd) # Load data into python import ephysIO data = ephysIO.MATload(filepath) # Display data in Stimfit import stf if data.get('xdiff') > 0: if data.get('yunit') == "V": stf.new_window_list(1.0e+3 * np.array(data.get('array')[1::])) stf.set_yunits('m' + data.get('yunit')) elif data.get('yunit') == "A": stf.new_window_list(1.0e+12 * data.get('array')[1::]) stf.set_yunits('p' + data.get('yunit')) else: stf.new_window_list(data.get('array')[1::]) stf.set_yunits(data.get('yunit')) stf.set_sampling_interval(1.0e+3 * data.get('xdiff')) stf.set_xunits('m' + data.get('xunit')) stf.set_trace(0) stf.set_recording_comment('\n'.join(data['notes'])) if data['saved'] != '': date = data['saved'][0:8] date = tuple(map(int, (date[0:4], date[4:6], date[6:8]))) stf.set_recording_date('%s-%s-%s' % date) time = data['saved'][9::] time = tuple(map(int, (time[0:2], time[2:4], time[4:6]))) stf.set_recording_time('%i-%i-%i' % time) elif data.get('xdiff') == 0: raise ValueError("Sample interval is not constant") else: data = {} collect() return
def loadacq4(channel=1): """ Load electrophysiology recording data from acq4 hdf5 (.ma) files. By default the primary recording channel is loaded. If the file is in a folder entitled 000, loadacq4 will load the recording traces from all sibling folders (000,001,002,...) """ # Import required modules for file IO from Tkinter import Tk import tkFileDialog from gc import collect # Use file open dialog to obtain file path root = Tk() opt = dict(defaultextension='.ma', filetypes=[('ACQ4 (HDF5) file', '*.ma'), ('All files', '*.*')]) if 'loadcwd' not in globals(): global loadcwd else: opt['initialdir'] = loadcwd filepath = tkFileDialog.askopenfilename(**opt) root.withdraw() if filepath != '': # Load data into python loadcwd = filepath.rsplit('/', 1)[0] import ephysIO data = ephysIO.MAload(filepath, channel) print filepath # Display data in Stimfit import stf if data.get('yunit') == 'A': stf.new_window_list(1.0e+12 * data.get('array')[1::]) stf.set_yunits('p' + data.get('yunit')) elif data.get('yunit') == 'V': stf.new_window_list(1.0e+3 * data.get('array')[1::]) stf.set_yunits('m' + data.get('yunit')) stf.set_sampling_interval(1.0e+3 * data['xdiff']) stf.set_xunits('m' + data.get('xunit')) stf.set_trace(0) # Import metadata into stimfit stf.set_recording_comment('\n'.join(data['notes'])) date = data['saved'][0:8] date = tuple(map(int, (date[0:4], date[4:6], date[6:8]))) stf.set_recording_date('%s-%s-%s' % date) time = data['saved'][9::] time = tuple(map(int, (time[0:2], time[2:4], time[4:6]))) stf.set_recording_time('%i-%i-%i' % time) else: data = {} collect() return
def glu_iv(pulses=13, subtract_base=True): """Calculates an iv from a repeated series of fast application and voltage pulses. Keyword arguments: pulses -- Number of pulses for the iv. subtract_base -- If True (default), baseline will be subtracted. Returns: True if successful. """ # Some ugly definitions for the time being # Cursors are in ms here. gFitEnd = 330.6 # fit end cursor is variable gFSelect = 0 # Monoexp gDictSize = stf.leastsq_param_size( gFSelect) + 2 # Parameters, chisqr, peak value gBaseStart = 220.5 # Start and end of the baseline before the control pulse, in ms gBaseEnd = 223.55 gPeakStart = 223.55 # Start and end of the peak cursors for the control pulse, in ms gPeakEnd = 253.55 if (gDictSize < 0): print('Couldn\'t retrieve function id=%d, aborting now.' % gFSelect) return False if (not (stf.check_doc())): print('Couldn\'t find an open file; aborting now.') return False # analyse iv, subtract baseline if requested: ivtools.analyze_iv(pulses) if (subtract_base == True): if (not (stf.set_base_start(gBaseStart, True))): return False if (not (stf.set_base_end(gBaseEnd, True))): return False stf.measure() stf.select_all() stf.subtract_base() # set cursors: if (not (stf.set_peak_start(gPeakStart, True))): return False if (not (stf.set_peak_end(gPeakEnd, True))): return False if (not (stf.set_base_start(gBaseStart, True))): return False if (not (stf.set_base_end(gBaseEnd, True))): return False if (not (stf.set_fit_end(gFitEnd, True))): return False if (not (stf.set_peak_mean(3))): return False if (not (stf.set_peak_direction("both"))): return False # A list for dictionary keys and values: dict_keys = [] dict_values = np.empty((gDictSize, stf.get_size_channel())) firstpass = True for n in range(0, stf.get_size_channel()): if (stf.set_trace(n) == False): print('Couldn\'t set a new trace; aborting now.') return False print('Analyzing trace %d of %d' % (n + 1, stf.get_size_channel())) # set the fit window cursors: if (not (stf.set_fit_start(stf.peak_index()))): return False # Least-squares fitting: p_dict = stf.leastsq(gFSelect) if (p_dict == 0): print('Couldn\'t perform a fit; aborting now.') return False # Create an empty list: tempdict_entry = [] row = 0 for k, v in p_dict.iteritems(): if (firstpass == True): dict_keys.append(k) dict_values[row][n] = v row = row + 1 if (firstpass): dict_keys.append("Peak amplitude") dict_values[row][n] = stf.get_peak() - stf.get_base() firstpass = False retDict = dict() # Create the dictionary for the table: entry = 0 for elem in dict_keys: retDict[elem] = dict_values[entry].tolist() entry = entry + 1 return stf.show_table_dictlist(retDict)
def iv(peakwindow=None, basewindow=None, pulsewindow=None, erev=None, peakmode="both", ichannel=0, vchannel=1, exclude=None): """ Compute and plot an IV curve for currents Parameters ---------- peakwindow : (float, float), optional Window for peak measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None basewindow : (float, float), optional Window for baseline measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None erev : float, optional End of v clamp pulse in ms or None to determine automatically. Default: None peakmode : string, optional Peak direction - one of "up", "down", "both" or "mean". Default: "up" ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 exclude : list of ints, optional List of trace indices to be excluded from the analysis. Default: None Returns ------- v_commands : numpy.ndarray Command voltages ipeaks : numpy.ndarray Peak currents gpeaks : numpy.ndarray Peak normalized conductances g_fit : numpy.ndarray Half-maximal voltage and slope of best-fit Boltzmann function """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() olddirection = stf.get_peak_direction() v_commands = [] ipeaks = [] if basewindow is not None: stf.base.cursor_time = basewindow fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis( fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis( fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): if exclude is not None: if ntrace in exclude: continue stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace))*dt, trace) # Measure only downward peaks (inward currents) if peakmode is "mean": stf.set_peak_direction("up") stf.set_peak_mean(-1) else: stf.set_peak_direction(peakmode) # Set peak computation to single sampling point stf.set_peak_mean(1) if peakwindow is not None: stf.peak.cursor_time = peakwindow stf.measure() if basewindow is not None: ipeaks.append(stf.peak.value-stf.base.value) else: ipeaks.append(stf.peak.value) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace))*dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars( ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars( ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1)) v_commands = np.array(v_commands) ipeaks = np.array(ipeaks) if erev is None: # Find first zero crossing in ipeaks: for npulse in range(ipeaks.shape[0]-1): if np.sign(ipeaks[npulse]) != np.sign(ipeaks[npulse+1]): # linear interpolation m1 = (ipeaks[npulse+1]-ipeaks[npulse]) / ( v_commands[npulse+1]-v_commands[npulse]) c1 = ipeaks[npulse] - m1*v_commands[npulse] erev = -c1/m1 break if erev is None: sys.stderr.write( "Could not determine reversal potential. Aborting now\n") return None # Reset peak computation to single sampling point stf.set_peak_mean(1) stf.set_peak_direction(olddirection) # Reset active channel stf.set_channel(ichannel) # Compute conductances: gpeaks, g_fit = gv(ipeaks, v_commands, erev) ax_ipeaks = plot_iv( ipeaks, v_commands, stf.get_yunits(channel=ichannel), stf.get_yunits(channel=1), fig, 222) ax_ipeaks.set_title("Peak current") ax_gpeaks = plot_gv( gpeaks, v_commands, stf.get_yunits(channel=vchannel), g_fit, fig, 224) ax_gpeaks.set_title("Peak conductance") stf.show_table_dictlist({ "Voltage ({0})".format( stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Peak current ({0})".format( stf.get_yunits(channel=ichannel)): ipeaks.tolist(), "Peak conductance (g/g_max)": gpeaks.tolist(), }) return v_commands, ipeaks, gpeaks, g_fit
def find_AP_peak_ADP_trace(*argv): """ count number of APs, find ADPs and thesholds in indicated trace with current injection/gradually increasing steps inputs: (time (msec) to start search, length of search region, starting current value, current delta between traces, threshold value, deflection direction ('up'/'down'), mark traces (True/False))""" ##if times are input, use those, otherwise use peak cursor settings #TO DO: optional change to threshold_values and deflection_direction if len(argv) > 0: trace_selection = argv[0] threshold_value = float(argv[1]) deflection_direction = argv[2] mark_option = argv[3] start_msec = float(argv[4]) delta_msec = float(argv[5]) else: trace_selection = stf.get_trace_index() threshold_value = 0 deflection_direction = 'up' mark_option = True start_msec = float(stf.get_peak_start(True)) delta_msec = float(stf.get_peak_end(True) - start_msec) stf.set_trace(trace_selection) ##gets AP counts and sample points in current trace if deflection_direction == 'up': direction_input = True else: direction_input = False ##count function will return number of APs in trace and sample points for subsequent functions trace_count, trace_sample_points_absolute = jjm_count( start_msec, delta_msec, threshold=threshold_value, up=direction_input, trace=trace_selection, mark=mark_option) ##finds afterdepolarizations--minimums between peaks trace_ADP_values, trace_ADP_indicies = find_ADPs( trace_sample_points_absolute) trace_si = stf.get_sampling_interval() trace_ADP_times = [sample * trace_si for sample in trace_ADP_indicies] trace_AP_values, trace_AP_indicies = find_ADPs( trace_sample_points_absolute) trace_si = stf.get_sampling_interval() trace_ADP_times = [sample * trace_si for sample in trace_AP_indicies] trace_thresholds_indicies = find_thresholds(stf.get_trace(trace_selection), trace_si, trace_ADP_indicies) trace_threshold_values = [ stf.get_trace(trace_selection)[index] for index in trace_thresholds_indicies ] trace_threshold_times = [ sample * trace_si for sample in trace_thresholds_indicies ] for sample, mv in zip(trace_thresholds_indicies, trace_threshold_values): stf.set_marker(sample, mv) for x in range(len(trace_threshold_values)): if trace_threshold_values[ x] > threshold_value or trace_threshold_values[ x] < trace_ADP_values[x]: trace_threshold_values[x] = 'NaN' #arrays for output ADP_out_array = np.transpose(np.array([trace_ADP_times, trace_ADP_values])) threshold_out_array = np.transpose( np.array([trace_threshold_times, trace_threshold_values])) out_array = np.hstack([ADP_out_array, threshold_out_array]) df_out = pd.DataFrame( out_array, columns=['ADP time', 'ADP (mV)', 'threshold time', 'threshold (mV)']) return (trace_count, df_out)
def timeconstants(fitwindow, pulsewindow, ichannel=0, vchannel=1): """ Compute and plot decay time constants Parameters ---------- fitwindow : (float, float), optional Window for fitting time constant (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 Returns ------- v_commands : numpy.ndarray Command voltages taus : numpy.ndarray Time constants """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() v_commands = [] taus = [] fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis(fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis(fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace)) * dt, trace) if fitwindow is not None: stf.fit.cursor_time = fitwindow res = stf.leastsq(0, False) taus.append(res['Tau_0']) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace)) * dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars(ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=ichannel)) stfio_plot.plot_scalebars(ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=vchannel)) v_commands = np.array(v_commands) taus = np.array(taus) ax_taus = plot_iv(taus, v_commands, "ms", stf.get_yunits(channel=vchannel), fig, 122) # Reset peak computation to single sampling point stf.set_peak_mean(1) # Reset active channel stf.set_channel(ichannel) # Compute conductances: stf.show_table_dictlist({ "Voltage ({0})".format(stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Taus (ms)": taus.tolist(), }) return v_commands, taus
def glu_iv( pulses = 13, subtract_base=True ): """Calculates an iv from a repeated series of fast application and voltage pulses. Keyword arguments: pulses -- Number of pulses for the iv. subtract_base -- If True (default), baseline will be subtracted. Returns: True if successful. """ # Some ugly definitions for the time being # Cursors are in ms here. gFitEnd = 330.6 # fit end cursor is variable gFSelect = 0 # Monoexp gDictSize = stf.leastsq_param_size( gFSelect ) + 2 # Parameters, chisqr, peak value gBaseStart = 220.5 # Start and end of the baseline before the control pulse, in ms gBaseEnd = 223.55 gPeakStart = 223.55 # Start and end of the peak cursors for the control pulse, in ms gPeakEnd = 253.55 if ( gDictSize < 0 ): print('Couldn\'t retrieve function id=%d, aborting now.'%gFSelect) return False if ( not(stf.check_doc()) ): print('Couldn\'t find an open file; aborting now.') return False # analyse iv, subtract baseline if requested: ivtools.analyze_iv( pulses ) if ( subtract_base == True ): if ( not(stf.set_base_start( gBaseStart, True )) ): return False if ( not(stf.set_base_end( gBaseEnd, True )) ): return False stf.measure() stf.select_all() stf.subtract_base() # set cursors: if ( not(stf.set_peak_start( gPeakStart, True )) ): return False if ( not(stf.set_peak_end( gPeakEnd, True )) ): return False if ( not(stf.set_base_start( gBaseStart, True )) ): return False if ( not(stf.set_base_end( gBaseEnd, True )) ): return False if ( not(stf.set_fit_end( gFitEnd, True )) ): return False if ( not(stf.set_peak_mean( 3 )) ): return False if ( not(stf.set_peak_direction( "both" )) ): return False # A list for dictionary keys and values: dict_keys = [] dict_values = np.empty( (gDictSize, stf.get_size_channel()) ) firstpass = True for n in range( 0, stf.get_size_channel() ): if ( stf.set_trace( n ) == False ): print('Couldn\'t set a new trace; aborting now.') return False print('Analyzing trace %d of %d'%( n+1, stf.get_size_channel() ) ) # set the fit window cursors: if ( not(stf.set_fit_start( stf.peak_index() )) ): return False # Least-squares fitting: p_dict = stf.leastsq( gFSelect ) if ( p_dict == 0 ): print('Couldn\'t perform a fit; aborting now.') return False # Create an empty list: tempdict_entry = [] row = 0 for k, v in p_dict.iteritems(): if ( firstpass == True ): dict_keys.append( k ) dict_values[row][n] = v row = row+1 if ( firstpass ): dict_keys.append( "Peak amplitude" ) dict_values[row][n] = stf.get_peak()-stf.get_base() firstpass = False retDict = dict() # Create the dictionary for the table: entry = 0 for elem in dict_keys: retDict[ elem ] = dict_values[entry].tolist() entry = entry+1 return stf.show_table_dictlist( retDict )
def iv(peakwindow=None, basewindow=None, pulsewindow=None, erev=None, peakmode="both", ichannel=0, vchannel=1, exclude=None): """ Compute and plot an IV curve for currents Parameters ---------- peakwindow : (float, float), optional Window for peak measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None basewindow : (float, float), optional Window for baseline measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None erev : float, optional End of v clamp pulse in ms or None to determine automatically. Default: None peakmode : string, optional Peak direction - one of "up", "down", "both" or "mean". Default: "up" ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 exclude : list of ints, optional List of trace indices to be excluded from the analysis. Default: None Returns ------- v_commands : numpy.ndarray Command voltages ipeaks : numpy.ndarray Peak currents gpeaks : numpy.ndarray Peak normalized conductances g_fit : numpy.ndarray Half-maximal voltage and slope of best-fit Boltzmann function """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() olddirection = stf.get_peak_direction() v_commands = [] ipeaks = [] if basewindow is not None: stf.base.cursor_time = basewindow fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis(fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis(fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): if exclude is not None: if ntrace in exclude: continue stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace)) * dt, trace) # Measure only downward peaks (inward currents) if peakmode is "mean": stf.set_peak_direction("up") stf.set_peak_mean(-1) else: stf.set_peak_direction(peakmode) # Set peak computation to single sampling point stf.set_peak_mean(1) if peakwindow is not None: stf.peak.cursor_time = peakwindow stf.measure() if basewindow is not None: ipeaks.append(stf.peak.value - stf.base.value) else: ipeaks.append(stf.peak.value) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace)) * dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars(ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars(ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1)) v_commands = np.array(v_commands) ipeaks = np.array(ipeaks) if erev is None: # Find first zero crossing in ipeaks: for npulse in range(ipeaks.shape[0] - 1): if np.sign(ipeaks[npulse]) != np.sign(ipeaks[npulse + 1]): # linear interpolation m1 = (ipeaks[npulse + 1] - ipeaks[npulse]) / ( v_commands[npulse + 1] - v_commands[npulse]) c1 = ipeaks[npulse] - m1 * v_commands[npulse] erev = -c1 / m1 break if erev is None: sys.stderr.write( "Could not determine reversal potential. Aborting now\n") return None # Reset peak computation to single sampling point stf.set_peak_mean(1) stf.set_peak_direction(olddirection) # Reset active channel stf.set_channel(ichannel) # Compute conductances: gpeaks, g_fit = gv(ipeaks, v_commands, erev) ax_ipeaks = plot_iv(ipeaks, v_commands, stf.get_yunits(channel=ichannel), stf.get_yunits(channel=1), fig, 222) ax_ipeaks.set_title("Peak current") ax_gpeaks = plot_gv(gpeaks, v_commands, stf.get_yunits(channel=vchannel), g_fit, fig, 224) ax_gpeaks.set_title("Peak conductance") stf.show_table_dictlist({ "Voltage ({0})".format(stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Peak current ({0})".format(stf.get_yunits(channel=ichannel)): ipeaks.tolist(), "Peak conductance (g/g_max)": gpeaks.tolist(), }) return v_commands, ipeaks, gpeaks, g_fit
def EPSPtrains(latency=200, numStim=4, intvlList=[1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.08, 0.06, 0.04, 0.02]): # Initialize numTrains = len(intvlList) # Number of trains intvlArray = np.array(intvlList) * 1000 # Units in ms si = stf.get_sampling_interval() # Units in ms # Background subtraction traceBaselines = [] subtractedTraces = [] k = 1e-4 x = [i * stf.get_sampling_interval() for i in range(stf.get_size_trace())] for i in range(numTrains): stf.set_trace(i) z = x y = stf.get_trace() traceBaselines.append(y) ridx = [] if intvlArray[i] > 500: for j in range(numStim): ridx += range( int(round(((intvlArray[i] * j) + latency - 1) / si)), int(round( ((intvlArray[i] * (j + 1)) + latency - 1) / si)) - 1) else: ridx += range( int(round((latency - 1) / si)), int( round(((intvlArray[i] * (numStim - 1)) + latency + 500) / si)) - 1) ridx += range(int(round(4999 / si)), int(round(5199 / si))) z = np.delete(z, ridx, 0) y = np.delete(y, ridx, 0) yi = np.interp(x, z, y) yf = signal.symiirorder1(yi, (k**2), 1 - k) traceBaselines.append(yf) subtractedTraces.append(stf.get_trace() - yf) stf.new_window_list(traceBaselines) stf.new_window_list(subtractedTraces) # Measure depolarization # Initialize variables a = [] b = [] # Set baseline start and end cursors stf.set_base_start(np.round( (latency - 50) / si)) # Average during 50 ms period before stimulus stf.set_base_end(np.round(latency / si)) # Set fit start cursor stf.set_fit_start(np.round(latency / si)) stf.set_fit_end( np.round(((intvlArray[1] * (numStim - 1)) + latency + 1000) / si)) # Include a 1 second window after last stimulus # Start AUC calculations for i in range(numTrains): stf.set_trace(i) stf.measure() b.append(stf.get_base()) n = int(stf.get_fit_end() + 1 - stf.get_fit_start()) x = np.array([k * stf.get_sampling_interval() for k in range(n)]) y = stf.get_trace()[int(stf.get_fit_start()):int(stf.get_fit_end() + 1)] a.append(np.trapz(y - b[i], x)) # Units in V.s return a
def plot_traces(plotwindow=None, ichannel=0, vchannel=1): """ Show traces in a figure Parameters ---------- plotwindow : (float, float), optional Plot window (in ms from beginning of trace) None for whole trace. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 1) ax_currents = stfio_plot.StandardAxis(fig, gs[:3, 0], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis(fig, gs[3:, 0], hasx=False, hasy=False, sharex=ax_currents) if plotwindow is not None: istart = int(plotwindow[0] / dt) istop = int(plotwindow[1] / dt) else: istart = 0 istop = None for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace()[istart:istop] ax_currents.plot(np.arange(len(trace)) * dt, trace) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace()[istart:istop] ax_voltages.plot(np.arange(len(trace)) * dt, trace) # Reset active channel stf.set_channel(ichannel) stfio_plot.plot_scalebars(ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars(ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1))
def timeconstants(fitwindow, pulsewindow, ichannel=0, vchannel=1): """ Compute and plot decay time constants Parameters ---------- fitwindow : (float, float), optional Window for fitting time constant (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 Returns ------- v_commands : numpy.ndarray Command voltages taus : numpy.ndarray Time constants """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() v_commands = [] taus = [] fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis( fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis( fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace))*dt, trace) if fitwindow is not None: stf.fit.cursor_time = fitwindow res = stf.leastsq(0, False) taus.append(res['Tau_0']) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace))*dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars( ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=ichannel)) stfio_plot.plot_scalebars( ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=vchannel)) v_commands = np.array(v_commands) taus = np.array(taus) ax_taus = plot_iv( taus, v_commands, "ms", stf.get_yunits(channel=vchannel), fig, 122) # Reset peak computation to single sampling point stf.set_peak_mean(1) # Reset active channel stf.set_channel(ichannel) # Compute conductances: stf.show_table_dictlist({ "Voltage ({0})".format( stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Taus (ms)": taus.tolist(), }) return v_commands, taus