示例#1
0
def num_above_noise(signal, noise_top):
    begin_above = None
    for i, hm in enumerate(signal):
        noise_top_extra = stft.db2amplitude(
            stft.amplitude2db(noise_top)
            + defs.HARMONIC_DB_ABOVE_NOISE_TOP)
        if hm < noise_top_extra:
            begin_above = i
            break
    return begin_above
示例#2
0
def estimate_f0_B(filenames):
    ### ASSUME: all filenames are of the same instrument-string
    wav_filename = filenames[0]
    basename='-'.join(os.path.basename(wav_filename).split('-')[0:3])
    if basename.startswith("test-440f"):
        return 440.0, 0, 1, 1, 1, 1

    ### get initial f0 estimate
    base_frequency_estimate = expected_frequencies.get_freq_from_filename(
        wav_filename)
    ### get noise
    initial_noise_floor, initial_noise_freqs, _, _, _ = calc_noise.get_noise(wav_filename)
    noise_cutoff = stft.db2amplitude(
        stft.amplitude2db(initial_noise_floor)+defs.B_MINIMUM_HARMONIC_SNR)

    #### get FFT frames from audio files
    sample_rate = None
    freqs = None
    estimate_B_buffers_list = []
    for wav_i, wav_filename in enumerate(filenames):
        #print wav_filename
        #window_buffer, sample_rate = stft.get_long_buffer_from_file(wav_filename,
        window_buffers, sample_rate = stft.get_buffers_from_file(wav_filename,
            (defs.B_NUM_BUFFERS_ESTIMATE))
        if freqs is None:
            freqs = [ stft.bin2hertz(i, sample_rate)
                for i in range(stft.WINDOWSIZE/2+1) ]

        estimate_B_buffers_this_list = []
        #fft_amplitude = stft.fft_amplitude(window_buffer, sample_rate)
        #estimate_B_buffers_this_list.append(fft_amplitude)
        for window_number in range(defs.B_NUM_BUFFERS_ESTIMATE):
            window_buffer = window_buffers[window_number]
            fft_amplitude = stft.stft_amplitude(window_buffer)
            estimate_B_buffers_this_list.append(fft_amplitude)
        estimate_B_buffers_list.extend(estimate_B_buffers_this_list)

    estimate_B_buffers = numpy.array(estimate_B_buffers_list)
    
    ### radius of search area for peaks
    # used with STFT only
    bin_initial_estimate = stft.hertz2bin(base_frequency_estimate,
        sample_rate)
    #bin_initial_estimate = (base_frequency_estimate
    #    * fft_amplitude.shape[0] / (sample_rate/2)
    #    )
    #print bin_initial_estimate
    bin_spread_below = int(math.ceil(abs(
        stft.hertz2bin(
            (1.0-defs.B_PEAK_SPREAD_BELOW_HERTZ)*base_frequency_estimate,
            sample_rate) - bin_initial_estimate)))
    bin_spread_above = int(math.ceil(
        stft.hertz2bin(
            (1.0+defs.B_PEAK_SPREAD_ABOVE_HERTZ)*base_frequency_estimate,
            sample_rate) - bin_initial_estimate))
    #bin_spread_below = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_above = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_below_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_BELOW_HERTZ*base_frequency_estimate,
    #        sample_rate))
    #bin_spread_above_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_ABOVE_HERTZ*base_frequency_estimate,
    #        sample_rate))

    ### actual estimate
    bin_f0, B, rsquared, harmonics, limit = get_bin_f0_B(
        bin_initial_estimate,
        estimate_B_buffers, noise_cutoff,
        #estimate_B_buffers, numpy.zeros(defs.LONG_WINDOWSIZE+1),
        bin_spread_below, bin_spread_above, sample_rate)

    highest_harmonic = 0
    for h in harmonics:
        if highest_harmonic < h.n:
            highest_harmonic = h.n
    limit = min(limit, highest_harmonic)
    # HACK: remove limit
    #limit = defs.TOTAL_HARMONICS
    #print "limit to:", limit

    #harmonics_enable = [True]*defs.TOTAL_HARMONICS
    harmonics_enable = [True]*limit

    bins_estimate = [ partials.mode_B2freq(bin_f0, i, B) for
        i in range(1,len(harmonics_enable)+1) ]
    bins_naive = [ i*bin_f0 for
        i in range(1,len(harmonics_enable)+1) ]

    if defs.B_PLOT:
        pylab.figure()
        pylab.plot(initial_noise_freqs,
            stft.amplitude2db(initial_noise_floor), color='black')
        #pylab.plot(initial_noise_freqs,
        #   stft.amplitude2db(initial_noise_floor)+defs.B_MINIMUM_HARMONIC_SNR,
        #   color='black')
        pylab.xlabel("Frequency (seconds)")
        pylab.ylabel("Power (/ dB)")

        for i in range(estimate_B_buffers.shape[0]):
            #color = matplotlib.cm.spring(float(wav_i)/len(filenames))
            #color = matplotlib.cm.RdYlGn(
            #color = matplotlib.cm.spring(
            #    float(i)/len(estimate_B_buffers_this_list))
            pylab.plot(freqs,
                stft.amplitude2db(estimate_B_buffers[i,:]),
                #color=color,
                color="orange",
                alpha=0.5,
                label=basename,
                )


        for est in bins_estimate:
            low = stft.bin2hertz(est - bin_spread_below, sample_rate)
            high = stft.bin2hertz(est + bin_spread_above, sample_rate)
            if True:
                pylab.axvspan(low, high, color='c', alpha=0.3)
            else:
                pylab.axvline(stft.bin2hertz(est, sample_rate),
                    color='cyan', alpha=0.3,
                    #linewidth=2.0
                    )
        for naive in bins_naive:
            freq = stft.bin2hertz(naive, sample_rate)
            pylab.axvline(freq, color='grey', alpha=0.2,
                #linewidth=2.0
                )
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            #pylab.plot(fn, mag, 'o',
            #    color='green'
            #    )
        pylab.xlabel("Frequency")
        pylab.ylabel("Decibels")
    if defs.B_DUMP_HARMS:
        t_fns = []
        t_mags = []
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            t_fns.append(fn)
            t_mags.append(mag)
        data = numpy.vstack((t_fns, t_mags)).transpose()
        numpy.savetxt("B-harms.txt", data)


    if defs.B_PLOT:
        pylab.show()

    f0 = stft.bin2hertz(bin_f0, sample_rate)
    stiff_ideal_limit = stiff_ideal_conflict.find_limit(bin_f0, B,
        bin_spread_below, bin_spread_above)
    lim = min(stiff_ideal_limit, limit)
    detected_freqs = StringFreqsB(f0, B, lim)
    stats = StringFreqsB_stats()
    stats.num_files = len(filenames)
    stats.rsquared = rsquared
    stats.highest_mode_detected = limit
    stats.highest_mode_stiff_ideal = stiff_ideal_limit
    stats.basename = basename


    adjusted_B, delta_fn = adjust_B.adjust(basename, limit, f0, B)
    if adjusted_B is not None:
        stiff_ideal_lim_adjusted = stiff_ideal_conflict.find_limit(
            bin_f0, adjusted_B,
            bin_spread_below, bin_spread_above)
        lim = min(stiff_ideal_lim_adjusted, limit)

        adjusted_freqs = StringFreqsB(f0, adjusted_B, lim)
        adjusted_freqs.delta_fn = delta_fn
        stats.highest_mode_stiff_ideal_adjusted = stiff_ideal_lim_adjusted
        stats.delta_fn = delta_fn
        final = StringFreqsB(f0, adjusted_B,
            min(stats.highest_mode_detected,
                stats.highest_mode_stiff_ideal,
                stiff_ideal_lim_adjusted))
    else:
        adjusted_freqs = None
        final = StringFreqsB(f0, B,
            min(stats.highest_mode_detected,
                stats.highest_mode_stiff_ideal))
    return detected_freqs, adjusted_freqs, stats, final
示例#3
0
    def generate_data(self, dirname, basename, plot_harms=False):
        #png_dirname = os.path.join(dirname, 'png')
        #if not os.path.exists(png_dirname):
        #    os.makedirs(png_dirname)

        if defs.ONLY_FILES_CONTAINING:
            search_filename = '%s*%s*wav' % (
                basename, defs.ONLY_FILES_CONTAINING)
        else:
            search_filename = basename + '*.wav'
        filenames = glob.glob(
            os.path.join(dirname, search_filename))
        filenames = filter(lambda x: "noise" not in x, filenames)
        filenames.sort()

        if defs.ONLY_N_FILES > 0:
            filenames = filenames[:defs.ONLY_N_FILES]
        _, _, _, final = estimate_f0_B.estimate_f0_B(filenames)
        f0 = final.f0
        B = final.B
        limit = final.highest_mode

        stats = HarmonicsStats()
        stats.num_files = len(filenames)

        decays = []
        for wav_filename_count, wav_filename in enumerate(filenames):
            basename = os.path.basename(wav_filename)
            #print "Processing", wav_filename
            pickle_filename = wav_filename+".stft.pickle"
            if os.path.exists(pickle_filename):
                pickle_file = open(pickle_filename, 'rb')
                harmonics, hop_rate = pickle.load(pickle_file)
                pickle_file.close()
                #print "... read pickle"
            else:
                #print "... calculating new"
                #frequency = expected_frequencies.get_freq_from_filename(
                #    wav_filename, f0, B)
                harmonics, hop_rate = stft_interface.get_harmonics(
                    wav_filename, f0, B, limit)
                pickle_file = open(pickle_filename, 'wb')
                pickle.dump( (harmonics, hop_rate), pickle_file, -1)
                pickle_file.close()
                #print "... wrote pickle"

            nums = tables.save_partials(os.path.splitext(basename)[0])
            if nums:
                dest_dir = "out/"
                for num in nums:
                    h = harmonics[num]
                    #print h.n
                    data = numpy.vstack( (
                            h.frame_numbers*hop_rate,
                            stft.amplitude2db(h.mags)
                        )).transpose()
                    filename = dest_dir + '/partials-%s-%i.txt' % (
                        basename, num)
                    numpy.savetxt( filename, data)
                    print "Wrote to %s" % filename
            
            for i, h in enumerate(harmonics):
                stats.num_harms_original += 1
                if len(h.mags) < 2:
                    stats.num_harms_max_no_above_noise += 1
                    continue

                #if h.n > 0:
                #    pylab.figure()
                #    pylab.semilogy(h.mags, '.')
                #    pylab.title("mode %i" % h.n)
                #    pylab.show()
                #N = 16
                #b, a = scipy.signal.butter(N, 0.25)
                #b = scipy.signal.firwin(N, 0.25)
                #a = 1.0
                #zi = scipy.signal.lfiltic(b, a, h.mags[0:N],
                #    h.mags[0:N])
                #h.mags, zf = scipy.signal.lfilter(b, a, h.mags,
                #    zi=zi)
                #pylab.semilogy(h.mags)
                #pylab.show()

                #if defs.HARMONICS_PRINT_SUMMARY:
                #    print "n: %i\tbegin" %(h.n)
                noise_mean = get_noise_mean(h.mags, 0.9)
                #noise_top = get_noise_top(h.mags, 0.9)
                #frames_above = num_above_noise(h.mags, noise_top)
                frames_above = num_above_noise(h.mags, noise_mean)
                #print h.n, "above:", frames_above
                noise_top_extra_min = stft.db2amplitude(
                    stft.amplitude2db(noise_mean)
                    + defs.HARMONIC_MAX_DB_ABOVE_NOISE_TOP)
                if max(h.mags) < noise_top_extra_min:
                #    print "bail noise_top_extra"
                #    # FIXME: special
                    stats.num_harms_max_no_above_noise += 1
                    continue
                #print h.n, frames_above
                if frames_above < defs.HARMONIC_MIN_HOPS_ABOVE_NOISE:
                    stats.num_harms_num_no_above_noise += 1
                    #print "not enough above noise top", frames_above
                    continue
                ### experiment: only take beginning
                #h.frame_numbers = h.frame_numbers[:frames_above]
                #h.mags = h.mags[:frames_above]

                ### experiment: test the derivative
                #dh_mags = numpy.zeros(len(h.mags)-1)
                #for i in range(0, len(h.mags)-1):
                    # subtraction on log scale
                    #dh_mags[i] = (h.mags[i+1] / h.mags[i]) * (
                    #    1.0 + h.mags[i])
                #    dh_mags[i] = (h.mags[i+1] - h.mags[i])
                #ddh_mags = numpy.zeros(len(dh_mags))
                #for i in range(0, len(dh_mags)-1):
                #    ddh_mags[i] = dh_mags[i+1] - dh_mags[i]
                #dh_mags = (h.mags[1:] - h.mags[:-1])
                #sub = (dh_mags > 0)
                ##print dh_mags * sub
                #num_below_zero = (dh_mags * sub).sum()
                #print "bad: %.3g" % (float(num_below_zero) / len(dh_mags) )
                ##pylab.plot(dh_mags)
                ##pylab.show()
                #print "%.3g\t%.3g\t%.3g\t%.3g" % (
                #   scipy.std(dh_mags), scipy.median(dh_mags),
                #   scipy.std(ddh_mags), scipy.median(ddh_mags))
                #if h.n in defs.HARMONICS_FIT_PLOT_N:
                #if False:
                #    #pylab.plot(h.mags, '-o')
                #    pylab.plot(dh_mags, '-')
                #    pylab.plot(ddh_mags, '-*')
                #    #pylab.xlim([0, 30])
#
#                    pylab.show()
                    #exit(1)

                #num_harms_above_noise += 1
                ts = hop_rate * h.frame_numbers
                if h.n == defs.HARMONICS_FIT_PLOT_N:
                    show=True
                    plot=False
                    plot_last=True
                else:
                    show=False
                    plot=False
                    plot_last=defs.HARMONICS_FIT_PLOT
                fit, rsquared, variance = decay_exponential.fit_best_exponential(
                    ts, h.mags, noise_mean=noise_mean,
                    show=show, plot=plot, plot_last=plot_last)
                if fit is None:
                    stats.num_harms_no_fit += 1
                    print "bail from no fit"
                    continue
                #alpha = fit[2]
                alpha = fit[1]

                #drop_amplitude = fit[0] / noise_mean
                drop_amplitude = max(h.mags) / noise_mean
                drop_db = stft.amplitude2db(drop_amplitude)
                #print drop_db
                #if drop_db < defs.HARMONIC_MIN_DROP_DB:
                #    stats.num_harms_no_drop += 1
                #    continue
                if rsquared < defs.HARMONIC_FIT_MIN_RSQUARED:
                    stats.num_harms_no_rsquared += 1
                    continue
                #if variance > defs.HARMONIC_FIT_MAX_VARIANCE:
                #    stats.num_harms_no_variance += 1
                #    continue
                #if variance > 1.0:
                #    continue



                freq = partials.mode_B2freq(f0, h.n, B)
                w = 2*numpy.pi*freq
                Q = w / (2*alpha)
                decay = classes.Decay(freq, w, h.n, alpha, Q,
                    rsquared, variance, drop_db)
                decays.append(decay)
                stats.num_harms_end += 1
                if defs.HARMONICS_PRINT_SUMMARY:
                    print "n: %i\t%.1f\tdecay: %.2f\tr-squared: %.2f\tvariance: %.2f\tdrop: %.2f db" % (
                        h.n, freq, alpha, rsquared, variance, drop_db)
                        
            #print "%s\t%i\t%i\t%i\t%i\t%i" % (
            #print "%s\t%i | \t%i\t%i\t%i\t| %i" % (
            #    basename,
            #    num_harms_original,
            #    num_harms_no_above_noise,
            #    num_harms_no_fit,
            #    #num_harms_no_rsquared,
            #    num_harms_no_drop,
            #    num_harms_end,
            #    )
        print "dropped:", stats.num_harms_max_no_above_noise, stats.num_harms_num_no_above_noise,

        def dot_color(d):
            #rs = 1.0/d.variance
            #if rs > 10.:
            #    rs = 10.
            #rs = 10*d.rsquared
            rs = d.drop/10.0

            rss = rs/10.0
            dot = '.'
            markersize = 5 + 5.0*(rss)
            color = matplotlib.cm.winter(1.-rss)
            return dot, color, markersize

        if defs.HARMONICS_PLOT_DECAYS or plot_harms:
            pylab.figure()
            for d in decays:
                #dot, color, markersize = dot_color(d.rsquared)
                dot, color, markersize = dot_color(d)
                pylab.plot(d.n, d.alpha,
                    dot, color=color,
                    markersize=markersize,
                    linewidth=0,
                    )
            pylab.xlabel("mode")
            pylab.ylabel("decay rates")
            pylab.xlim([0, max([d.n for d in decays])+1])
            #pylab.legend()

        if defs.HARMONICS_PLOT_Q:
            pylab.figure()
            #print "# n, loss factor, weight"
            for d in decays:
                #print "%i, %.2e, %.2e" %(d.n, 1./d.Q, d.rsquared)
                #dot, color, markersize = dot_color(1.0/d.variance)
                dot, color, markersize = dot_color(d)
                #if d.variance > 10 or d.rsquared < 0.25:
                #if d.rsquared < 0.3:
                #    dot = 'x'
                #    color = 'red'
                #else:
                #    print d.variance
                pylab.plot(d.n, d.Q,
                    dot, color=color,
                    markersize=markersize,
                    linewidth=0,
                    )
            pylab.xlabel("mode")
            pylab.ylabel("Q")
            pylab.xlim([0, max([d.n for d in decays])+1])
            #pylab.legend()

        if defs.HARMONICS_PLOT_LOSS:
            pylab.figure()
            #print "# n, loss factor, weight"
            for d in decays:
                #print "%i, %.2e, %.2e" %(d.n, 1./d.Q, d.rsquared)
                #dot, color, markersize = dot_color(1.0/d.variance)
                dot, color, markersize = dot_color(d)
                #if d.variance > 10 or d.rsquared < 0.25:
                #if d.rsquared < 0.3:
                #    dot = 'x'
                #    color = 'red'
                #else:
                #    print d.variance
                pylab.plot(d.n, 1.0/d.Q,
                    dot, color=color,
                    markersize=markersize,
                    linewidth=0,
                    )
            pylab.xlabel("mode")
            pylab.ylabel("loss")
            pylab.xlim([0, max([d.n for d in decays])+1])
            #pylab.legend()

        ns = [ h.n for h in decays ]
        stats.highest_harm = max(ns)

        if (defs.HARMONICS_PLOT_DECAYS or defs.HARMONICS_PLOT_Q
                or defs.HARMONICS_PLOT_LOSS or plot_harms):
            pylab.show()
        return decays, f0, B, stats
示例#4
0
def calc_harmonics(wav_filename, f0=None, B=None,
        limit=defs.TOTAL_HARMONICS):
    if f0 is None:
        raise Exception("need f0 and B; run another program")

    # eliminate $HOME ~ and symlinks
    wav_filename = os.path.realpath(os.path.expanduser(wav_filename))
    basename = os.path.splitext(os.path.basename(wav_filename))[0]
    shared_dirname = os.path.abspath(
        os.path.join(os.path.dirname(wav_filename), '..'))

    dest_dir = os.path.join(shared_dirname, "spectrum", basename)
    if not os.path.exists(dest_dir):
        os.makedirs(dest_dir)

    window_buffers, sample_rate = stft.get_buffers_from_file(wav_filename)

    freqs = [ stft.bin2hertz(i, sample_rate)
        for i in range(stft.WINDOWSIZE/2+1) ]

    ### get noise for tuning off low harmonics
    initial_noise_floor, initial_noise_freqs, _, _, _ = calc_noise.get_noise(wav_filename)
    noise_cutoff = stft.db2amplitude(
        stft.amplitude2db(initial_noise_floor)
        +defs.STFT_MIN_DB_ABOVE_NOISE)

    bin_f0 = stft.hertz2bin(f0, sample_rate)
    # radius of search area for peaks
    bin_spread_below = int(
        stft.hertz2bin(defs.STFT_PEAK_SPREAD_BELOW_HERTZ*f0,
            sample_rate))
    bin_spread_above = int(
        stft.hertz2bin(defs.STFT_PEAK_SPREAD_ABOVE_HERTZ*f0,
            sample_rate))
    bin_spread_below = 3
    bin_spread_above = 3

    if defs.STFT_DUMP_TEXT:
        write_data.write_Bs(dest_dir, sample_rate, f0, B, limit,
            bin_spread_below, bin_spread_above)
        write_data.write_ideals(dest_dir, f0, limit)


    # store the peaks
    harmonics = [None]*limit

    spectrums = []
    table_info = tables.save_fft(basename)
    if table_info:
        harms_freqs = []
        harms_mags = []

    if defs.ONLY_N_WINDOWS:
        window_buffers = window_buffers[:defs.ONLY_N_WINDOWS]
    for window_number, window_buffer in enumerate(window_buffers):
        #print '-------- window --- %i' % window_number
        #fft_amplitude = stft.stft(window_buffer)
        fft_amplitude = stft.stft_amplitude(window_buffer)
        if window_number == 0:
            write_data.write_spectrum(dest_dir, window_number,
                freqs, stft.amplitude2db(fft_amplitude))
        if defs.STFT_DUMP_TEXT:
            write_data.write_spectrum(dest_dir, window_number,
            freqs, stft.amplitude2db(fft_amplitude))
        spectrums.append(fft_amplitude)

        # get harmonic peaks, and disable harmonics if can't do
        harms, _ = partials.get_freqs_mags(
            limit, bin_f0, B, fft_amplitude,
            bin_spread_below, bin_spread_above,
            only_peaks=False)
        if defs.STFT_PLOT_PARTIALS:
            plots.plot_partials(fft_amplitude, sample_rate, harms,
                bin_f0, B, bin_spread_below, bin_spread_above
                )
        if defs.STFT_DUMP_TEXT:
            dump_freqs = numpy.zeros(limit)
            dump_mags = numpy.zeros(limit)
        if table_info:
            harm_freqs = []
            harm_mags = []

        for h in harms:
            i = h.n-1
            if harmonics[i] is None:
                #print stft.bin2hertz(h.fft_bin, sample_rate), h.mag, noise_cutoff[h.fft_bin]
                harmonics[i] = classes.HarmonicSignal(h.n)
                #if use_harmonic(h, noise_cutoff, fft_amplitude,
                #        bin_f0, B,
                #        bin_spread_below, bin_spread_above,
                #        ):
                #    harmonics[i] = classes.HarmonicSignal(h.n)
                #else:
                #    #print "disable harmonic ", n
                #    harmonics[i] = False
            if harmonics[i] is not False:
                if h.mag == 0:
                    continue
                if defs.STFT_DUMP_TEXT:
                    dump_freqs[i] = stft.bin2hertz(h.fft_bin, sample_rate)
                    dump_mags[i] = h.mag
                if table_info:
                    harm_freqs.append(stft.bin2hertz(h.fft_bin, sample_rate))
                    harm_mags.append(h.mag)
                harmonics[i].mags.append(h.mag)
                harmonics[i].frame_numbers.append(window_number)
            #print harmonics[i]
        if table_info:
            harms_freqs.append(harm_freqs)
            harms_mags.append(harm_mags)

        if defs.STFT_DUMP_TEXT:
            #print dump_mags
            write_data.write_harms(dest_dir, window_number,
               dump_freqs, dump_mags, harmonics)

        if (defs.STFT_PLOT_FIRST_N > 0) and (window_number < defs.STFT_PLOT_FIRST_N):
            plots.plot_stft_first_n(window_number,
                defs.STFT_PLOT_FIRST_N,
                fft_amplitude, sample_rate, harms, wav_filename,
                bin_f0, B, bin_spread_below, bin_spread_above
                )
            if window_number >= defs.STFT_PLOT_FIRST_N - 1:
                pylab.show()
    dh = float(defs.HOPSIZE) / sample_rate
    if defs.STFT_DUMP_ALL:
        write_data.write_stft_all(dest_dir, spectrums, freqs, dh)
    table_info = tables.save_fft(basename)
    if table_info:
        for ti in table_info:
            write_data.write_stft_3d(basename, spectrums, freqs, dh,
                ti, harms_freqs, harms_mags, sample_rate)

    # clean up harmonics
    harmonics = filter(lambda x: x is not False, harmonics)
    for h in harmonics:
        h.mags = numpy.array(h.mags)
        h.frame_numbers = numpy.array(h.frame_numbers)
        #pylab.plot(stft.amplitude2db(h.mags))
        #pylab.show()

    return harmonics, dh
示例#5
0
def estimate_f0_B(filenames):
    ### ASSUME: all filenames are of the same instrument-string
    wav_filename = filenames[0]
    basename = '-'.join(os.path.basename(wav_filename).split('-')[0:3])
    if basename.startswith("test-440f"):
        return 440.0, 0, 1, 1, 1, 1

    ### get initial f0 estimate
    base_frequency_estimate = expected_frequencies.get_freq_from_filename(
        wav_filename)
    ### get noise
    initial_noise_floor, initial_noise_freqs, _, _, _ = calc_noise.get_noise(
        wav_filename)
    noise_cutoff = stft.db2amplitude(
        stft.amplitude2db(initial_noise_floor) + defs.B_MINIMUM_HARMONIC_SNR)

    #### get FFT frames from audio files
    sample_rate = None
    freqs = None
    estimate_B_buffers_list = []
    for wav_i, wav_filename in enumerate(filenames):
        #print wav_filename
        #window_buffer, sample_rate = stft.get_long_buffer_from_file(wav_filename,
        window_buffers, sample_rate = stft.get_buffers_from_file(
            wav_filename, (defs.B_NUM_BUFFERS_ESTIMATE))
        if freqs is None:
            freqs = [
                stft.bin2hertz(i, sample_rate)
                for i in range(stft.WINDOWSIZE / 2 + 1)
            ]

        estimate_B_buffers_this_list = []
        #fft_amplitude = stft.fft_amplitude(window_buffer, sample_rate)
        #estimate_B_buffers_this_list.append(fft_amplitude)
        for window_number in range(defs.B_NUM_BUFFERS_ESTIMATE):
            window_buffer = window_buffers[window_number]
            fft_amplitude = stft.stft_amplitude(window_buffer)
            estimate_B_buffers_this_list.append(fft_amplitude)
        estimate_B_buffers_list.extend(estimate_B_buffers_this_list)

    estimate_B_buffers = numpy.array(estimate_B_buffers_list)

    ### radius of search area for peaks
    # used with STFT only
    bin_initial_estimate = stft.hertz2bin(base_frequency_estimate, sample_rate)
    #bin_initial_estimate = (base_frequency_estimate
    #    * fft_amplitude.shape[0] / (sample_rate/2)
    #    )
    #print bin_initial_estimate
    bin_spread_below = int(
        math.ceil(
            abs(
                stft.hertz2bin((1.0 - defs.B_PEAK_SPREAD_BELOW_HERTZ) *
                               base_frequency_estimate, sample_rate) -
                bin_initial_estimate)))
    bin_spread_above = int(
        math.ceil(
            stft.hertz2bin((1.0 + defs.B_PEAK_SPREAD_ABOVE_HERTZ) *
                           base_frequency_estimate, sample_rate) -
            bin_initial_estimate))
    #bin_spread_below = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_above = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_below_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_BELOW_HERTZ*base_frequency_estimate,
    #        sample_rate))
    #bin_spread_above_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_ABOVE_HERTZ*base_frequency_estimate,
    #        sample_rate))

    ### actual estimate
    bin_f0, B, rsquared, harmonics, limit = get_bin_f0_B(
        bin_initial_estimate,
        estimate_B_buffers,
        noise_cutoff,
        #estimate_B_buffers, numpy.zeros(defs.LONG_WINDOWSIZE+1),
        bin_spread_below,
        bin_spread_above,
        sample_rate)

    highest_harmonic = 0
    for h in harmonics:
        if highest_harmonic < h.n:
            highest_harmonic = h.n
    limit = min(limit, highest_harmonic)
    # HACK: remove limit
    #limit = defs.TOTAL_HARMONICS
    #print "limit to:", limit

    #harmonics_enable = [True]*defs.TOTAL_HARMONICS
    harmonics_enable = [True] * limit

    bins_estimate = [
        partials.mode_B2freq(bin_f0, i, B)
        for i in range(1,
                       len(harmonics_enable) + 1)
    ]
    bins_naive = [i * bin_f0 for i in range(1, len(harmonics_enable) + 1)]

    if defs.B_PLOT:
        pylab.figure()
        pylab.plot(initial_noise_freqs,
                   stft.amplitude2db(initial_noise_floor),
                   color='black')
        #pylab.plot(initial_noise_freqs,
        #   stft.amplitude2db(initial_noise_floor)+defs.B_MINIMUM_HARMONIC_SNR,
        #   color='black')
        pylab.xlabel("Frequency (seconds)")
        pylab.ylabel("Power (/ dB)")

        for i in range(estimate_B_buffers.shape[0]):
            #color = matplotlib.cm.spring(float(wav_i)/len(filenames))
            #color = matplotlib.cm.RdYlGn(
            #color = matplotlib.cm.spring(
            #    float(i)/len(estimate_B_buffers_this_list))
            pylab.plot(
                freqs,
                stft.amplitude2db(estimate_B_buffers[i, :]),
                #color=color,
                color="orange",
                alpha=0.5,
                label=basename,
            )

        for est in bins_estimate:
            low = stft.bin2hertz(est - bin_spread_below, sample_rate)
            high = stft.bin2hertz(est + bin_spread_above, sample_rate)
            if True:
                pylab.axvspan(low, high, color='c', alpha=0.3)
            else:
                pylab.axvline(
                    stft.bin2hertz(est, sample_rate),
                    color='cyan',
                    alpha=0.3,
                    #linewidth=2.0
                )
        for naive in bins_naive:
            freq = stft.bin2hertz(naive, sample_rate)
            pylab.axvline(
                freq,
                color='grey',
                alpha=0.2,
                #linewidth=2.0
            )
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            #pylab.plot(fn, mag, 'o',
            #    color='green'
            #    )
        pylab.xlabel("Frequency")
        pylab.ylabel("Decibels")
    if defs.B_DUMP_HARMS:
        t_fns = []
        t_mags = []
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            t_fns.append(fn)
            t_mags.append(mag)
        data = numpy.vstack((t_fns, t_mags)).transpose()
        numpy.savetxt("B-harms.txt", data)

    if defs.B_PLOT:
        pylab.show()

    f0 = stft.bin2hertz(bin_f0, sample_rate)
    stiff_ideal_limit = stiff_ideal_conflict.find_limit(
        bin_f0, B, bin_spread_below, bin_spread_above)
    lim = min(stiff_ideal_limit, limit)
    detected_freqs = StringFreqsB(f0, B, lim)
    stats = StringFreqsB_stats()
    stats.num_files = len(filenames)
    stats.rsquared = rsquared
    stats.highest_mode_detected = limit
    stats.highest_mode_stiff_ideal = stiff_ideal_limit
    stats.basename = basename

    adjusted_B, delta_fn = adjust_B.adjust(basename, limit, f0, B)
    if adjusted_B is not None:
        stiff_ideal_lim_adjusted = stiff_ideal_conflict.find_limit(
            bin_f0, adjusted_B, bin_spread_below, bin_spread_above)
        lim = min(stiff_ideal_lim_adjusted, limit)

        adjusted_freqs = StringFreqsB(f0, adjusted_B, lim)
        adjusted_freqs.delta_fn = delta_fn
        stats.highest_mode_stiff_ideal_adjusted = stiff_ideal_lim_adjusted
        stats.delta_fn = delta_fn
        final = StringFreqsB(
            f0, adjusted_B,
            min(stats.highest_mode_detected, stats.highest_mode_stiff_ideal,
                stiff_ideal_lim_adjusted))
    else:
        adjusted_freqs = None
        final = StringFreqsB(
            f0, B,
            min(stats.highest_mode_detected, stats.highest_mode_stiff_ideal))
    return detected_freqs, adjusted_freqs, stats, final