示例#1
0
def test_conditioning():
    graph = Graph()
    f1, e1 = GP(EQ(), graph=graph), GP(1e-8 * Delta(), graph=graph)
    f2, e2 = GP(EQ(), graph=graph), GP(2e-8 * Delta(), graph=graph)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))

    x = array([[1], [2], [3]])
    y = array([[4, 5], [6, 7], [8, 9]])
    gpar = gpar | (x, y)

    # Extract posterior processes.
    f1_post, e1_post = gpar.layers[0]()
    f2_post, e2_post = gpar.layers[1]()

    # Test independence of noises.
    yield eq, graph.kernels[f1_post, e1_post], ZeroKernel()
    yield eq, graph.kernels[f2_post, e2_post], ZeroKernel()

    # Test form of noises.
    yield eq, e1.mean, e1_post.mean
    yield eq, e1.kernel, e1_post.kernel
    yield eq, e2.mean, e2_post.mean
    yield eq, e2.kernel, e2_post.kernel

    # Test posteriors.
    yield approx, f1_post.mean(x), y[:, 0:1]
    yield approx, f2_post.mean(B.concat([x, y[:, 0:1]], axis=1)), y[:, 1:2]
示例#2
0
def objective(vs, m, x_data, y_data, locs):
    """NLML objective.

    Args:
        vs (:class:`varz.Vars`): Variable container.
        m (int): Number of latent processes.
        x_data (tensor): Time stamps of the observations.
        y_data (tensor): Observations.
        locs (tensor): Spatial locations of observations.

    Returns:
        scalar: Negative log-marginal likelihood.
    """
    y_proj, _, S, noises_obs = project(vs, m, y_data, locs)
    xs, noise_obs, noises_latent = model(vs, m)

    # Add contribution of latent processes.
    lml = 0
    for i, (x, y) in enumerate(zip(xs, y_proj)):
        e_signal = GP((noise_obs / S[i] + noises_latent[i]) * Delta(),
                      graph=x.graph)
        lml += (x + e_signal)(x_data).logpdf(y)

        e_noise = GP(noise_obs / S[i] * Delta(), graph=x.graph)
        lml -= e_noise(x_data).logpdf(y)

    # Add regularisation contribution.
    lml += B.sum(Normal(Diagonal(noises_obs)).logpdf(B.transpose(y_data)))

    # Return negative the evidence, normalised by the number of data points.
    n, p = B.shape(y_data)
    return -lml / (n * p)
示例#3
0
def test_conditioning():
    graph = Graph()
    f1, e1 = GP(EQ(), graph=graph), GP(1e-8 * Delta(), graph=graph)
    f2, e2 = GP(EQ(), graph=graph), GP(2e-8 * Delta(), graph=graph)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))

    x = tensor([[1], [2], [3]])
    y = tensor([[4, 5],
                [6, 7],
                [8, 9]])
    gpar = gpar | (x, y)

    # Extract posterior processes.
    f1_post, e1_post = gpar.layers[0]()
    f2_post, e2_post = gpar.layers[1]()

    # Test independence of noises.
    assert graph.kernels[f1_post, e1_post] == ZeroKernel()
    assert graph.kernels[f2_post, e2_post] == ZeroKernel()

    # Test form of noises.
    assert e1.mean == e1_post.mean
    assert e1.kernel == e1_post.kernel
    assert e2.mean == e2_post.mean
    assert e2.kernel == e2_post.kernel

    # Test posteriors.
    approx(f1_post.mean(x), y[:, 0:1])
    approx(f2_post.mean(B.concat(x, y[:, 0:1], axis=1)), y[:, 1:2])
示例#4
0
def test_logpdf():
    graph = Graph()
    f1, e1 = GP(EQ(), graph=graph), GP(2e-1 * Delta(), graph=graph)
    f2, e2 = GP(Linear(), graph=graph), GP(1e-1 * Delta(), graph=graph)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))

    # Sample some data from GPAR.
    x = B.linspace(0, 2, 10, dtype=torch.float64)[:, None]
    y = gpar.sample(x, latent=True)

    # Compute logpdf.
    logpdf1 = (f1 + e1)(x).logpdf(y[:, 0])
    logpdf2 = (f2 + e2)(B.concat([x, y[:, 0:1]], axis=1)).logpdf(y[:, 1])

    # Test computation of GPAR.
    yield eq, gpar.logpdf(x, y), logpdf1 + logpdf2
    yield eq, gpar.logpdf(x, y, only_last_layer=True), logpdf2

    # Test resuming computation.
    x_int, x_ind_int = gpar.logpdf(x, y, return_inputs=True, outputs=[0])
    yield eq, gpar.logpdf(x_int, y, x_ind=x_ind_int, outputs=[1]), logpdf2

    # Test that sampling missing gives a stochastic estimate.
    y[1, 0] = np.nan
    yield ge, \
          B.abs(gpar.logpdf(x, y, sample_missing=True) -
                gpar.logpdf(x, y, sample_missing=True)).numpy(), \
          1e-3
示例#5
0
    def __init__(
        self,
        measure: Measure,
        xs: List[GP],
        h: AbstractMatrix,
        noise_obs: B.Numeric,
        noises_latent: B.Numeric,
    ):
        self.measure = measure
        self.xs = xs
        self.h = h
        self.noise_obs = noise_obs
        self.noises_latent = noises_latent

        # Create noisy latent processes.
        xs_noisy = [
            x + GP(self.noises_latent[i] * Delta(), measure=self.measure)
            for i, x in enumerate(xs)
        ]

        # Create noiseless observed processes.
        self.fs = _matmul(self.h, self.xs)

        # Create observed processes.
        fs_noisy = _matmul(self.h, xs_noisy)
        self.ys = [
            f + GP(self.noise_obs * Delta(), measure=self.measure) for f in fs_noisy
        ]
示例#6
0
def test_sample():
    graph = Graph()
    x = array([1, 2, 3])[:, None]

    # Test that it produces random samples. Not sure how to test for
    # correctness.
    f1, e1 = GP(EQ(), graph=graph), GP(1e-1 * Delta(), graph=graph)
    f2, e2 = GP(EQ(), graph=graph), GP(1e-1 * Delta(), graph=graph)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))
    yield ge, B.sum(B.abs(gpar.sample(x) - gpar.sample(x))), 1e-3
    yield ge, \
          B.sum(B.abs(gpar.sample(x, latent=True) -
                      gpar.sample(x, latent=True))), \
          1e-3

    # Test that posterior latent samples are around the data that is
    # conditioned on.
    graph = Graph()
    f1, e1 = GP(EQ(), graph=graph), GP(1e-8 * Delta(), graph=graph)
    f2, e2 = GP(EQ(), graph=graph), GP(1e-8 * Delta(), graph=graph)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))
    y = gpar.sample(x, latent=True)
    gpar = gpar | (x, y)
    yield approx, gpar.sample(x), y, 3
    yield approx, gpar.sample(x, latent=True), y, 3
示例#7
0
def test_conditioning(x, w):
    prior = Measure()
    f1, e1 = GP(EQ(), measure=prior), GP(1e-10 * Delta(), measure=prior)
    f2, e2 = GP(EQ(), measure=prior), GP(2e-10 * Delta(), measure=prior)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))

    # Generate some data.
    y = B.concat((f1 + e1)(x).sample(), (f2 + e2)(x).sample(), axis=1)

    # Extract posterior processes.
    gpar = gpar | (x, y, w)
    f1_post, e1_post = gpar.layers[0]()
    f2_post, e2_post = gpar.layers[1]()

    # Test independence of noises.
    assert f1_post.measure.kernels[f1_post, e1_post] == ZeroKernel()
    assert f2_post.measure.kernels[f2_post, e2_post] == ZeroKernel()

    # Test form of noises.
    assert e1.mean == e1_post.mean
    assert e1.kernel == e1_post.kernel
    assert e2.mean == e2_post.mean
    assert e2.kernel == e2_post.kernel

    # Test posteriors.
    approx(f1_post.mean(x), y[:, 0:1], atol=1e-3)
    approx(f2_post.mean(B.concat(x, y[:, 0:1], axis=1)), y[:, 1:2], atol=1e-3)
示例#8
0
def test_logpdf(x, w):
    prior = Measure()
    f1, e1 = GP(EQ(), measure=prior), GP(2e-1 * Delta(), measure=prior)
    f2, e2 = GP(Linear(), measure=prior), GP(1e-1 * Delta(), measure=prior)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))

    # Generate some data.
    y = gpar.sample(x, w, latent=True)

    # Compute logpdf.
    x1 = WeightedUnique(x, w[:, 0])
    x2 = WeightedUnique(B.concat(x, y[:, 0:1], axis=1), w[:, 1])
    logpdf1 = (f1 + e1)(x1).logpdf(y[:, 0])
    logpdf2 = (f2 + e2)(x2).logpdf(y[:, 1])

    # Test computation of GPAR.
    assert gpar.logpdf(x, y, w) == logpdf1 + logpdf2
    assert gpar.logpdf(x, y, w, only_last_layer=True) == logpdf2

    # Test resuming computation.
    x_partial, x_ind_partial = gpar.logpdf(x,
                                           y,
                                           w,
                                           return_inputs=True,
                                           outputs=[0])
    assert gpar.logpdf(x_partial, y, w, x_ind=x_ind_partial,
                       outputs=[1]) == logpdf2

    # Test that sampling missing gives a stochastic estimate.
    y[1, 0] = np.nan
    all_different(
        gpar.logpdf(x, y, w, sample_missing=True),
        gpar.logpdf(x, y, w, sample_missing=True),
    )
示例#9
0
def test_obs(x):
    prior = Measure()
    f = GP(EQ(), measure=prior)
    e = GP(1e-1 * Delta(), measure=prior)

    # Generate some data.
    w = B.rand(B.shape(x)[0]) + 1e-2
    y = f(x).sample()

    # Set some observations to be missing.
    y_missing = y.copy()
    y_missing[::2] = np.nan

    # Check dense case.
    gpar = GPAR()
    obs = gpar._obs(x, None, y_missing, w, f, e)
    assert isinstance(obs, Obs)
    approx(
        prior.logpdf(obs),
        (f + e)(WeightedUnique(x[1::2], w[1::2])).logpdf(y[1::2]),
        atol=1e-6,
    )

    # Check sparse case.
    gpar = GPAR(x_ind=x)
    obs = gpar._obs(x, x, y_missing, w, f, e)
    assert isinstance(obs, SparseObs)
    approx(
        prior.logpdf(obs),
        (f + e)(WeightedUnique(x[1::2], w[1::2])).logpdf(y[1::2]),
        atol=1e-6,
    )
示例#10
0
def test_sample(x, w):
    prior = Measure()

    # Test that it produces random samples.
    f1, e1 = GP(EQ(), measure=prior), GP(1e-1 * Delta(), measure=prior)
    f2, e2 = GP(EQ(), measure=prior), GP(2e-1 * Delta(), measure=prior)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))
    all_different(gpar.sample(x, w), gpar.sample(x, w))
    all_different(gpar.sample(x, w, latent=True), gpar.sample(x,
                                                              w,
                                                              latent=True))

    # Test that posterior latent samples are around the data that is conditioned on.
    prior = Measure()
    f1, e1 = GP(EQ(), measure=prior), GP(1e-10 * Delta(), measure=prior)
    f2, e2 = GP(EQ(), measure=prior), GP(2e-10 * Delta(), measure=prior)
    gpar = GPAR().add_layer(lambda: (f1, e1)).add_layer(lambda: (f2, e2))
    y = gpar.sample(x, w, latent=True)
    gpar = gpar | (x, y, w)
    approx(gpar.sample(x, w), y, atol=1e-3)
    approx(gpar.sample(x, w, latent=True), y, atol=1e-3)
示例#11
0
def predict(vs, m, x_data, y_data, locs, x_pred):
    """Make predictions.

    Args:
        vs (:class:`varz.Vars`): Variable container.
        m (int): Number of latent processes.
        x_data (tensor): Time stamps of the observations.
        y_data (tensor): Observations.
        locs (tensor): Spatial locations of observations.
        x_pred (tensor): Time stamps to predict at.

    Returns:
        tuple: Tuple containing the predictions for the latent processes and
            predictions for the observations.
    """
    # Construct model and project data for prediction.
    xs, noise_obs, noises_latent = model(vs, m)
    y_proj, H, S, noises_obs = project(vs, m, y_data, locs)
    L = noise_obs / S + noises_latent

    # Condition latent processes.
    xs_posterior = []
    for x, noise, y in zip(xs, L, y_proj):
        e = GP(noise * Delta(), graph=x.graph)
        xs_posterior.append(x | ((x + e)(x_data), y))
    xs = xs_posterior

    # Extract posterior means and variances of the latent processes.
    x_means, x_vars = zip(*[(x.mean(x_pred)[:, 0], x.kernel.elwise(x_pred)[:,
                                                                           0])
                            for x in xs])

    # Construct predictions for latent processes.
    lat_preds = [
        B.to_numpy(mean, mean - 2 * (var + L[i])**.5,
                   mean + 2 * (var + L[i])**.5)
        for i, (mean, var) in enumerate(zip(x_means, x_vars))
    ]

    # Pull means through mixing matrix.
    x_means = B.stack(*x_means, axis=0)
    y_means = B.matmul(H, x_means)

    # Pull variances through mixing matrix and add noise.
    x_vars = B.stack(*x_vars, axis=0)
    y_vars = B.matmul(H**2, x_vars + noises_latent[:, None]) + noise_obs

    # Construct predictions for observations.
    obs_preds = [(mean, mean - 2 * var**.5, mean + 2 * var**.5)
                 for mean, var in zip(y_means, y_vars)]

    return lat_preds, obs_preds
示例#12
0
def test_obs():
    graph = Graph()
    f = GP(EQ(), graph=graph)
    e = GP(1e-8 * Delta(), graph=graph)

    # Check that it produces the correct observations.
    x = B.linspace(0, 0.1, 10, dtype=torch.float64)
    y = f(x).sample()

    # Set some observations to be missing.
    y_missing = y.clone()
    y_missing[::2] = np.nan

    # Check dense case.
    gpar = GPAR()
    obs = gpar._obs(x, None, y_missing, f, e)
    yield eq, type(obs), Obs
    yield approx, y, (f | obs).mean(x)

    # Check sparse case.
    gpar = GPAR(x_ind=x)
    obs = gpar._obs(x, x, y_missing, f, e)
    yield eq, type(obs), SparseObs
    yield approx, y, (f | obs).mean(x)
import matplotlib.pyplot as plt
from wbml.plot import tweak

from stheno import B, Measure, GP, EQ, Delta

# Define points to predict at.
x = B.linspace(0, 10, 100)
x_obs = B.linspace(0, 10, 20)

# Constuct a prior:
prior = Measure()
w = lambda x: B.exp(-(x**2) / 0.5)  # Window
b = [(w * GP(EQ(), measure=prior)).shift(xi)
     for xi in x_obs]  # Weighted basis funs
f = sum(b)  # Latent function
e = GP(Delta(), measure=prior)  # Noise
y = f + 0.2 * e  # Observation model

# Sample a true, underlying function and observations.
f_true, y_obs = prior.sample(f(x), y(x_obs))

# Condition on the observations to make predictions.
post = prior | (y(x_obs), y_obs)

# Plot result.
for i, bi in enumerate(b):
    mean, lower, upper = post(bi(x)).marginals()
    kw_args = {"label": "Basis functions"} if i == 0 else {}
    plt.plot(x, mean, style="pred2", **kw_args)
plt.plot(x, f_true, label="True", style="test")
plt.scatter(x_obs, y_obs, label="Observations", style="train", s=20)
示例#14
0
import matplotlib.pyplot as plt
import numpy as np
import wbml.plot

from stheno import GP, EQ, Delta, model

# Define points to predict at.
x = np.linspace(0, 10, 100)
x_obs = np.linspace(0, 7, 20)

# Construct a prior.
f = GP(EQ().periodic(5.))  # Latent function.
e = GP(Delta())  # Noise.
y = f + .5 * e

# Sample a true, underlying function and observations.
f_true, y_obs = model.sample(f(x), y(x_obs))

# Now condition on the observations to make predictions.
mean, lower, upper = (f | (y(x_obs), y_obs))(x).marginals()

# Plot result.
plt.plot(x, f_true, label='True', c='tab:blue')
plt.scatter(x_obs, y_obs, label='Observations', c='tab:red')
plt.plot(x, mean, label='Prediction', c='tab:green')
plt.plot(x, lower, ls='--', c='tab:green')
plt.plot(x, upper, ls='--', c='tab:green')

wbml.plot.tweak()
plt.savefig('readme_example1_simple_regression.png')
plt.show()
示例#15
0
    (
        Exp(),
        lambda scheme: RGPCM(
            scheme=scheme,
            window=window,
            scale=scale,
            noise=noise,
            n_u=n_u,
            m_max=n_z // 2,
            t=t,
        ),
    ),
]:
    # Sample data.
    gp_f = GP(kernel)
    gp_y = gp_f + GP(noise * Delta(), measure=gp_f.measure)
    f, y = gp_f.measure.sample(gp_f(t), gp_y(t))
    f, y = B.flatten(f), B.flatten(y)
    wd.save(
        {
            "t": t,
            "f": f,
            "k": B.flatten(kernel(t_k, 0)),
            "y": y,
            "true_logpdf": gp_y(t).logpdf(y),
        },
        slugify(str(kernel)),
        "data.pickle",
    )

    for scheme in ["mean-field", "structured"]:
示例#16
0
文件: eq.py 项目: wesselb/gpcm
n = 881  # Add last one for `linspace`.
noise = 0.1
t = B.linspace(-44, 44, n)
t_plot = B.linspace(44, 44, 500)

# Setup true model and GPCM models.
kernel = EQ()
window = 2
scale = 1
n_u = 40
n_z = 88

# Sample data.
m = Measure()
gp_f = GP(kernel, measure=m)
gp_y = gp_f + GP(noise * Delta(), measure=m)
truth, y = map(B.flatten, m.sample(gp_f(t_plot), gp_y(t)))

# Remove region [-8.8, 8.8].
inds = ~((t >= -8.8) & (t <= 8.8))
t = t[inds]
y = y[inds]


def comparative_kernel(vs_):
    return vs_.pos(1) * kernel.stretch(vs_.pos(1.0)) + vs_.pos(noise) * Delta()


run(
    args=args,
    wd=wd,
# Define points to predict at.
x = np.linspace(0, 10, 100)
x_obs = np.linspace(0, 10, 10)

# Model parameters:
m = 2
p = 4
H = np.random.randn(p, m)

# Construct latent functions
us = VGP(m, EQ())
fs = us.lmatmul(H)

# Construct noise.
e = VGP(p, 0.5 * Delta())

# Construct observation model.
ys = e + fs

# Sample a true, underlying function and observations.
fs_true = fs.sample(x)
ys_obs = (ys | fs.obs(x, fs_true)).sample(x_obs)

# Condition the model on the observations to make predictions.
preds = (fs | ys.obs(x_obs, ys_obs)).marginals(x)


# Plot results.
def plot_prediction(x, f, pred, x_obs=None, y_obs=None):
    plt.plot(x, f, label='True', c='tab:blue')
示例#18
0
import matplotlib.pyplot as plt
import numpy as np

from stheno import GP, Delta, model, Obs, dense

# Define points to predict at.
x = np.linspace(0, 10, 200)
x_obs = np.linspace(0, 10, 10)

# Construct the model.
slope = GP(1)
intercept = GP(5)
f = slope * (lambda x: x) + intercept

e = 0.2 * GP(Delta())  # Noise model

y = f + e  # Observation model

# Sample a slope, intercept, underlying function, and observations.
true_slope, true_intercept, f_true, y_obs = \
    model.sample(slope(0), intercept(0), f(x), y(x_obs))

# Condition on the observations to make predictions.
slope, intercept, f = (slope, intercept, f) | Obs(y(x_obs), y_obs)
mean, lower, upper = f(x).marginals()

print('true slope', true_slope)
print('predicted slope', slope(0).mean)
print('true intercept', true_intercept)
print('predicted intercept', intercept(0).mean)
B.epsilon = 1e-10

# Define points to predict at.
x = B.linspace(0, 10, 200)
x_obs = B.linspace(0, 7, 50)

with Measure() as prior:
    # Construct a latent function consisting of four different components.
    f_smooth = GP(EQ())
    f_wiggly = GP(RQ(1e-1).stretch(0.5))
    f_periodic = GP(EQ().periodic(1.0))
    f_linear = GP(Linear())
    f = f_smooth + f_wiggly + f_periodic + 0.2 * f_linear

    # Let the observation noise consist of a bit of exponential noise.
    e_indep = GP(Delta())
    e_exp = GP(Exp())
    e = e_indep + 0.3 * e_exp

    # Sum the latent function and observation noise to get a model for the observations.
    y = f + 0.5 * e

# Sample a true, underlying function and observations.
(
    f_true_smooth,
    f_true_wiggly,
    f_true_periodic,
    f_true_linear,
    f_true,
    y_obs,
) = prior.sample(f_smooth(x), f_wiggly(x), f_periodic(x), f_linear(x), f(x),
# Define points to predict at.
x = B.linspace(0, 10, 200)
x_obs = B.linspace(0, 7, 50)

# Construct a latent function consisting of four different components.
prior = Measure()
f_smooth = GP(EQ(), measure=prior)
f_wiggly = GP(RQ(1e-1).stretch(0.5), measure=prior)
f_periodic = GP(EQ().periodic(1.0), measure=prior)
f_linear = GP(Linear(), measure=prior)

f = f_smooth + f_wiggly + f_periodic + 0.2 * f_linear

# Let the observation noise consist of a bit of exponential noise.
e_indep = GP(Delta(), measure=prior)
e_exp = GP(Exp(), measure=prior)

e = e_indep + 0.3 * e_exp

# Sum the latent function and observation noise to get a model for the observations.
y = f + 0.5 * e

# Sample a true, underlying function and observations.
(
    f_true_smooth,
    f_true_wiggly,
    f_true_periodic,
    f_true_linear,
    f_true,
    y_obs,
示例#21
0
def root(a):
    u, s_diag, _ = np.linalg.svd(a)
    return u.dot(np.diag(s_diag**.5)).dot(u.T)


def fp_difference(K, *Ks):
    root_K = root(K)
    return K - np.mean([root(root_K @ Ki @ root_K) for Ki in Ks], axis=0)


t_max = 5
n = 400

# k1 = EQ().stretch(t_max / 2) * EQ().periodic(1) + 1e-6 * Delta()
# k2 = EQ().stretch(t_max / 2) * EQ().periodic(1.8) + 1e-6 * Delta()
k1 = EQ().periodic(0.8) + 1e-6 * Delta()
k2 = EQ().periodic(0.85) + 1e-6 * Delta()
k3 = EQ().periodic(0.9) + 1e-6 * Delta()

x = np.linspace(0, t_max, n)

K1 = random_K(n)
K2 = random_K(n)
K3 = random_K(n)

# K1, K2, K3 = random_K(n), random_K(n), random_K(n)

# Solve.
print('Computing...')
C1 = spa.solve_continuous_are(np.zeros((n, n)), np.linalg.cholesky(K1), K3,
                              np.eye(n))
示例#22
0
文件: eq.py 项目: wesselb/gpcm
def comparative_kernel(vs_):
    return vs_.pos(1) * kernel.stretch(vs_.pos(1.0)) + vs_.pos(noise) * Delta()
# Define points to predict at.
x = B.linspace(0, 10, 100)
x_obs = B.linspace(0, 10, 10)

# Model parameters:
m = 2
p = 4
H = B.randn(p, m)

# Construct latent functions.
prior = Measure()
us = VGP([GP(EQ(), measure=prior) for _ in range(m)])
fs = us.lmatmul(H)

# Construct noise.
e = VGP([GP(0.5 * Delta(), measure=prior) for _ in range(p)])

# Construct observation model.
ys = e + fs

# Sample a true, underlying function and observations.
samples = prior.sample(*(p(x) for p in fs.ps), *(p(x_obs) for p in ys.ps))
fs_true, ys_obs = samples[:p], samples[p:]

# Compute the posterior and make predictions.
post = prior | (*((p(x_obs), y_obs) for p, y_obs in zip(ys.ps, ys_obs)), )
preds = [post(p(x)).marginals() for p in fs.ps]


# Plot results.
def plot_prediction(x, f, pred, x_obs=None, y_obs=None):
示例#24
0
import matplotlib.pyplot as plt
import numpy as np

from stheno import GP, EQ, Delta, Obs

# Define points to predict at.
x = np.linspace(0, 10, 200)
x_obs = np.linspace(0, 10, 10)

# Construct the model.
f = 0.7 * GP(EQ()).stretch(1.5)
e = 0.2 * GP(Delta())

# Construct derivatives via finite differences.
df = f.diff_approx(1)
ddf = f.diff_approx(2)
dddf = f.diff_approx(3) + e

# Fix the integration constants.
f, df, ddf, dddf = (f, df, ddf, dddf) | Obs((f(0), 1), (df(0), 0),
                                            (ddf(0), -1))

# Sample observations.
y_obs = np.sin(x_obs) + 0.2 * np.random.randn(*x_obs.shape)

# Condition on the observations to make predictions.
f, df, ddf, dddf = (f, df, ddf, dddf) | Obs(dddf(x_obs), y_obs)

# And make predictions.
pred_iiif = f(x).marginals()
pred_iif = df(x).marginals()
示例#25
0
import wbml.out as out
from wbml.plot import tweak

from stheno import B, Measure, GP, Delta

# Define points to predict at.
x = B.linspace(0, 10, 200)
x_obs = B.linspace(0, 10, 10)

# Construct the model.
prior = Measure()
slope = GP(1, measure=prior)
intercept = GP(5, measure=prior)
f = slope * (lambda x: x) + intercept

e = 0.2 * GP(Delta(), measure=prior)  # Noise model

y = f + e  # Observation model

# Sample a slope, intercept, underlying function, and observations.
true_slope, true_intercept, f_true, y_obs = prior.sample(
    slope(0), intercept(0), f(x), y(x_obs))

# Condition on the observations to make predictions.
post = prior | (y(x_obs), y_obs)
mean, lower, upper = post(f(x)).marginals()

out.kv("True slope", true_slope[0, 0])
out.kv("Predicted slope", post(slope(0)).mean[0, 0])
out.kv("True intercept", true_intercept[0, 0])
out.kv("Predicted intercept", post(intercept(0)).mean[0, 0])