示例#1
0
def main(gpu_id=None):

    if gpu_id is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id

    # Reset Tensorflow graph
    tf.reset_default_graph()

    # Generate stimulus
    stim = Stimulus()

    # Load saved genetically trained model
    evo_model = EvoModel()
    saved_evo_model = pickle.load(
        open('./savedir/conv_task/run_21_model_stats.pkl', 'rb'))
    evo_model.update_variables(saved_evo_model['var_dict'])
    print('Loaded evo model')

    config = tf.ConfigProto(allow_soft_placement=True)
    with tf.Session(config=config) as sess:

        init = tf.global_variables_initializer()
        sess.run(init)

        device = '/cpu:0' if gpu_id is None else '/gpu:0'
        with tf.device(device):
            # Load trained convolutional autoencoder
            if par['task'] == 'conv_task':
                folder = './latent_all_img_batch16_filt16_loss80/'
                conv_model = tf.train.import_meta_graph(
                    folder + 'conv_model_with_latent.meta', clear_devices=True)
                conv_model.restore(sess, tf.train.latest_checkpoint(folder))
                print('Loaded conv model from', folder)

                # Generate batch and save output images
                for i in range(4):
                    input_data, conv_target, evo_target = stim.generate_train_batch(
                    )

                    # Run input through convolutional model
                    feed_dict = {'x:0': input_data, 'y:0': conv_target}
                    test_loss, conv_output, encoded = sess.run(
                        ['l:0', 'o:0', 'encoded:0'], feed_dict=feed_dict)

                    # Run latent output through evolutionary model
                    evo_model.load_batch(encoded, evo_target)
                    evo_model.run_models()
                    evo_model.judge_models()

                    # Save output from both models
                    plot_conv_evo_outputs(conv_target,
                                          conv_output,
                                          evo_target,
                                          evo_model.output,
                                          i,
                                          test=True)
            else:
                folder = './'
                conv_top = tf.train.import_meta_graph(folder +
                                                      'conv_model_top.meta',
                                                      clear_devices=True)
                conv_top.restore(sess, tf.train.latest_checkpoint(folder))

                for i in range(4):
                    test_input, test_target, _ = stim.generate_test_batch()
                    feed_dict = {
                        'input:0': test_input,
                        'target:0': test_target
                    }
                    test_loss, test_output = sess.run(['l:0', 'output:0'],
                                                      feed_dict=feed_dict)
                    plot_conv_all(test_target, test_output, i)
示例#2
0
def main(gpu_id = None):

    if gpu_id is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id

    # Generate stimulus
    stim = Stimulus()

    # Initialize evolutionary model
    evo_model = EvoModel()

    # Model stats
    losses = []
    testing_losses = []
    save_iter = []

    # Reset Tensorflow graph
    tf.reset_default_graph()

    config = tf.ConfigProto(allow_soft_placement=True)
    with tf.Session(config=config) as sess:

        init = tf.global_variables_initializer()
        sess.run(init)

        device = '/cpu:0' if gpu_id is None else '/gpu:0'
        with tf.device(device):
            # Load saved convolutional autoencoder
            folder = './latent_all_img_batch16_filt16_loss80/'
            conv_model = tf.train.import_meta_graph(folder + 'conv_model_with_latent.meta', clear_devices=True)
            conv_model.restore(sess, tf.train.latest_checkpoint(folder)) 
            print('Loaded model from',folder)


        stuck = 0
        test_loss = [1000000]
        threshold = [10000, 5000, 1000, 750, 500, 300, 150, -1]

        # Train the model
        start = time.time()
        for i in range(par['num_iterations']):

            # Generate train batch and run through the convolutional autoencoder
            input_data, conv_target, evo_target = stim.generate_train_batch()
            feed_dict = {'x:0': input_data, 'y:0': conv_target}
            conv_loss, conv_output, encoded = sess.run(['l:0', 'o:0','encoded:0'], feed_dict=feed_dict)

            # One cycle of evolutionary model
            evo_model.load_batch(encoded, evo_target)
            evo_model.run_models()
            evo_model.judge_models()
            evo_model.breed_models_genetic()

            # If all models are performing poorly, introduce new randomly generated models
            evo_loss = evo_model.get_losses(True)
            if par['num_migrators']:
                evo_model.migration()
            if evo_loss[0] < 10000:
                par['num_migrators'] = 0

            # Decrease mutation rate when loss value is below certain threshold
            if len(threshold) > 0 and evo_loss[0] < threshold[0]:
                evo_model.slowdown_mutation()
                threshold.pop(0)

            # If there is no improvement in performance for many iterations, change mutation rate
            if evo_loss[0] < test_loss[0]:
                stuck = 0
            else:
                stuck += 1
                if stuck > 20:
                    # evo_model.speed_up_mutation()
                    evo_model.slowdown_mutation()
                    stuck = 0

            # Check current status
            if i % par['print_iter'] == 0:

                # Print current status
                print_evo_stats(i, evo_model.con_dict['mutation_rate'], evo_model.con_dict['mutation_strength'], stuck, conv_loss, np.array([*evo_loss[0:3],evo_loss[par['num_survivors']-1]]), time.time()-start)
                losses.append(evo_loss[0])
                save_iter.append(i)

                # Save model and output
                if i % par['save_iter'] == 0 and (evo_loss[0] < test_loss[0] or i%100 == 0):

                    # Generate batch from testing set and run through both models
                    input_data, conv_target, evo_target = stim.generate_test_batch()
                    feed_dict = {'x:0': input_data, 'y:0': conv_target}
                    test_loss, conv_output, encoded = sess.run(['l:0', 'o:0','encoded:0'], feed_dict=feed_dict)

                    evo_model.load_batch(encoded, evo_target)
                    evo_model.run_models()
                    evo_model.judge_models()

                    test_loss = evo_model.get_losses(True)
                    testing_losses.append(test_loss[0])

                    # Save output images
                    plot_conv_evo_outputs(conv_target, conv_output, evo_target, evo_model.output, i)

                    # Save model
                    pickle.dump({'iter':save_iter,'var_dict':evo_model.var_dict, 'losses': losses, 'test_loss': testing_losses, 'last_iter': i}, \
                        open(par['save_dir']+'run_'+str(par['run_number'])+'_model_stats.pkl', 'wb'))
                    
                # Plot loss curve
                if i > 0:
                    plt.plot(losses[1:])
                    plt.savefig(par['save_dir']+'run_'+str(par['run_number'])+'_training_curve.png')
                    plt.close()
示例#3
0
def main(gpu_id=None):

    if gpu_id is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id

    # Reset Tensorflow graph
    tf.reset_default_graph()

    # Placeholders for the tensorflow model
    x = tf.placeholder(tf.float32,
                       shape=[par['batch_train_size'], par['n_input']],
                       name='x')
    y = tf.placeholder(tf.float32,
                       shape=[par['batch_train_size'], par['n_output']],
                       name='y')

    # Generate stimulus
    stim = Stimulus()

    # Model stats
    losses = []
    testing_losses = []
    save_iter = []

    config = tf.ConfigProto()
    with tf.Session(config=config) as sess:

        device = '/cpu:0' if gpu_id is None else '/gpu:0'
        with tf.device(device):
            model = Model(x, y)

        init = tf.global_variables_initializer()
        sess.run(init)
        saver = tf.train.Saver()

        # Train the model
        prev_loss = 10000000
        start = time.time()
        for i in range(par['num_iterations']):

            # Generate training batch and train model
            input_data, target_data, _ = stim.generate_train_batch()
            feed_dict = {x: input_data, y: target_data}
            _, train_loss, model_output = sess.run(
                [model.train_op, model.loss, model.output],
                feed_dict=feed_dict)

            # Check current status
            if i % par['print_iter'] == 0:

                # Print current status
                print_conv_stats(i, train_loss, time.time() - start)
                losses.append(train_loss)
                save_iter.append(i)

                # Test and save model
                if i % par['save_iter'] == 0:

                    # Generate test bach and get model performance
                    test_input, test_target, _ = stim.generate_test_batch()
                    feed_dict = {x: test_input, y: test_target}
                    test_loss, test_output = sess.run([
                        model.loss,
                        model.output,
                    ],
                                                      feed_dict=feed_dict)
                    testing_losses.append(test_loss)

                    # Plot model outputs
                    if test_loss < prev_loss:
                        prev_loss = test_loss
                        plot_conv_outputs(target_data, model_output,
                                          test_target, test_output, i)

                        # Save training stats and model
                        weight = sess.run(
                            tf.get_collection(tf.GraphKeys.VARIABLES,
                                              'filters/kernel')[0])
                        pickle.dump({'weight':weight,'iter':save_iter,'losses': losses, 'test_loss': testing_losses, 'last_iter': i}, \
                            open(par['save_dir']+'run_'+str(par['run_number'])+'_model_stats.pkl', 'wb'))

                        saved_path = saver.save(
                            sess, './upsample2/conv_model_with_latent')
                        print('model saved in {}'.format(saved_path))

                # Plot loss curve
                if i > 0:
                    plt.plot(losses[1:])
                    plt.savefig(par['save_dir'] + 'run_' +
                                str(par['run_number']) + '_training_curve.png')
                    plt.close()
示例#4
0
def main(gpu_id = None):

    if gpu_id is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id

    # Reset Tensorflow graph
    tf.reset_default_graph()

    # Generate stimulus
    stim = Stimulus()

    # Placeholders for the tensorflow model
    x = tf.placeholder(tf.float32, shape=[par['batch_train_size'],par['n_input']])
    y = tf.placeholder(tf.float32, shape=[par['batch_train_size'],par['n_output']])
    
    # Model stats
    losses = []
    testing_losses = []
    save_iter = []
    prev_loss = 10000

    config = tf.ConfigProto()
    with tf.Session(config=config) as sess:

        device = '/cpu:0' if gpu_id is None else '/gpu:0'
        with tf.device(device):
            model = Model(x,y)
        
        init = tf.global_variables_initializer()
        sess.run(init)

        # Train the model
        start = time.time()
        for i in range(par['num_iterations']):

            # Generate training set
            input_data, target_data, _ = stim.generate_train_batch()
            feed_dict = {x: input_data, y: target_data}
            _, train_loss, model_output = sess.run([model.train_op, model.loss, model.output], feed_dict=feed_dict)


            # Check current status
            if i % par['print_iter'] == 0:

                # Print current status
                print('Model {:2} | Task: {:s} | Iter: {:6} | Loss: {:8.3f} | Run Time: {:5.3f}s'.format( \
                    par['run_number'], par['task'], i, train_loss, time.time()-start))
                losses.append(train_loss)
                save_iter.append(i)

                # Save one training and output img from this iteration
                if i % par['save_iter'] == 0:

                    # Generate batch from testing set and check the output
                    test_input, test_target, _ = stim.generate_test_batch()
                    feed_dict = {x: test_input, y: test_target}
                    test_loss, test_output = sess.run([model.loss, model.output], feed_dict=feed_dict)
                    testing_losses.append(test_loss)

                    if test_loss < prev_loss:
                        prev_loss = test_loss
                    
                        # Results from a training sample
                        original1 = target_data[0].reshape(par['out_img_shape'])
                        output1 = model_output[0].reshape(par['out_img_shape'])
                        font = cv2.FONT_HERSHEY_SIMPLEX
                        cv2.putText(original1,'Training',(5,20), font, 0.5,(255,255,255), 2, cv2.LINE_AA)
                        cv2.putText(output1,'Output',(5,20), font, 0.5,(255,255,255), 2, cv2.LINE_AA)

                        # Results from a testing sample
                        original2 = test_target[1].reshape(par['out_img_shape'])
                        output2 = test_output[1].reshape(par['out_img_shape'])
                        original3 = test_target[2].reshape(par['out_img_shape'])
                        output3 = test_output[2].reshape(par['out_img_shape'])
                        cv2.putText(original2,'Testing',(5,20), font, 0.5,(255,255,255), 2, cv2.LINE_AA)
                        cv2.putText(output2,'Output',(5,20), font, 0.5,(255,255,255), 2, cv2.LINE_AA)
                    
                        vis1 = np.concatenate((original1, output1), axis=1)
                        vis2 = np.concatenate((original2, output2), axis=1)
                        vis3 = np.concatenate((original3, output3), axis=1)
                        vis = np.concatenate((vis1, vis2), axis=0)
                        vis = np.concatenate((vis, vis3), axis=0)

                        cv2.imwrite(par['save_dir']+'run_'+str(par['run_number'])+'_test_'+str(i)+'.png', vis)

                        pickle.dump({'iter':save_iter,'losses': losses, 'test_loss': testing_losses, 'last_iter': i}, \
                            open(par['save_dir']+'run_'+str(par['run_number'])+'_model_stats.pkl', 'wb'))


                # Plot loss curve
                if i > 0:
                    plt.plot(losses[1:])
                    plt.savefig(par['save_dir']+'run_'+str(par['run_number'])+'_training_curve.png')
                    plt.close()

                # Stop training if loss is small enough (just for sweep purposes)
                if train_loss < 30:
                    break