示例#1
0
 def test_two_averaged_spectra(self):
     """
     For nspec=2, I can derive this by hand:
     """
     power = 1.0
     nspec = 2
     manual_pval = 1.0 - avg_cdf_two_spectra(power)
     assert np.isclose(cospectra_pvalue(power, nspec), manual_pval)
示例#2
0
 def test_single_spectrum_with_positive_power(self):
     """
     Because the Laplace distribution is always symmetric
     around zero, let's do a second version where I look
     for a different number.
     """
     power = 0.69314718055
     nspec = 1
     assert np.isclose(cospectra_pvalue(power, nspec), 0.25)
示例#3
0
 def test_single_spectrum(self):
     # the Laplace distribution is symmetric around
     # 0, so a power of 0 should return p=0.5
     power = 0.0
     nspec = 1
     assert cospectra_pvalue(power, nspec) == 0.5
示例#4
0
 def test_pval_fails_if_nspec_not_integer(self):
     power = 1.0
     nspec = 1.5
     with pytest.raises(ValueError):
         pval = cospectra_pvalue(power, nspec)
示例#5
0
 def test_pval_fails_if_nspec_negative(self):
     power = 1.0
     nspec = -10
     with pytest.raises(ValueError):
         pval = cospectra_pvalue(power, nspec)
示例#6
0
 def test_pval_fails_if_multiple_powers_inf(self):
     power = [1, 2.0, np.inf]
     nspec = 1
     with pytest.raises(ValueError):
         pval = cospectra_pvalue(power, nspec)
示例#7
0
 def test_pval_fails_if_single_power_nan(self):
     power = np.nan
     nspec = 1
     with pytest.raises(ValueError):
         pval = cospectra_pvalue(power, nspec)
示例#8
0
 def test_pval_returns_iterable_when_iterable_input(self):
     power = [0, 1, 2]
     nspec = 1.0
     pval = cospectra_pvalue(power, nspec)
     assert isinstance(pval, np.ndarray)
     assert len(pval) == len(power)
示例#9
0
 def test_pval_returns_float_when_float_input(self):
     power = 1.0
     nspec = 1.0
     pval = cospectra_pvalue(power, nspec)
     assert isinstance(pval, float)
示例#10
0
 def test_sixty_spectra(self):
     power = 1.0
     nspec = 60
     gauss = scipy.stats.norm(0, np.sqrt(2 / (nspec + 1)))
     pval_theory = gauss.sf(power)
     assert np.isclose(cospectra_pvalue(power, nspec), pval_theory)