示例#1
0
def _test_selection_plotter(selector, population, filename):
    """
    Test :class:`.SelectionPlotter`.

    Parameters
    ----------
    selector : :class:`.Selector`
        The selector whose selections will be plotted.

    population : :class:`tuple` of :class:`.MoleculeRecord`
        The population from which `selector` selects.

    filename : :class:`str`
        The filename for the plots.

    Returns
    -------
    None : :class:`NoneType`

    """

    stk.SelectionPlotter(filename, selector)
    tuple(selector.select(population))
示例#2
0
        progress_fn=apply(pore_diameter),
    ),
    stk.ProgressPlotter(
        filename="max_window_size",
        property_fn=lambda progress, mol: mol.largest_window,
        y_label="Maximum Window Size / A",
        filter=lambda progress, mol: mol.largest_window is not None,
        progress_fn=apply(largest_window),
    ),
    stk.ProgressPlotter(
        filename="window_std",
        property_fn=lambda progress, mol: mol.window_std,
        y_label="Std. Dev. of Window Diameters / A",
        filter=lambda progress, mol: mol.window_std is not None,
        progress_fn=apply(window_std),
    )
]

stk.SelectionPlotter(
    filename="generational_selection",
    selector=generation_selector,
)
stk.SelectionPlotter(
    filename="crossover_selection",
    selector=crossover_selector,
)
stk.SelectionPlotter(
    filename="mutation_selection",
    selector=mutation_selector,
)
示例#3
0
            )
    ),
    stk.ProgressPlotter(
        filename='window_std',
        property_fn=lambda progress, mol: mol.window_std,
        y_label='Std. Dev. of Window Diameters / A',
        filter=lambda progress, mol:
            mol.window_std is not None,
        progress_fn=apply(window_std),
    ),
    stk.ProgressPlotter(
        filename='pore_diameter',
        property_fn=lambda progress, mol: mol.pore_diameter,
        y_label='Pore Diameter / A',
        progress_fn=apply(pore_diameter),
    ),
]

stk.SelectionPlotter(
    filename='generational_selection',
    selector=generation_selector,
)
stk.SelectionPlotter(
    filename='crossover_selection',
    selector=crossover_selector,
)
stk.SelectionPlotter(
    filename='mutation_selection',
    selector=mutation_selector,
)
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--mongodb_uri',
                        help='The MongoDB URI for the database to connect to.',
                        default='mongodb://localhost:27017/')
    args = parser.parse_args()

    logging.basicConfig(level=logging.INFO)

    # Use a random seed to get reproducible results.
    random_seed = 4
    generator = np.random.RandomState(random_seed)

    logger.info('Making building blocks.')

    # Load the building block databases.
    fluoros = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'fluoros.txt',
            functional_group_factory=stk.FluoroFactory(),
        ))
    bromos = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'bromos.txt',
            functional_group_factory=stk.BromoFactory(),
        ))

    initial_population = tuple(get_initial_population(fluoros, bromos))
    # Write the initial population.
    for i, record in enumerate(initial_population):
        write(record.get_molecule(), f'initial_{i}.mol')

    client = pymongo.MongoClient(args.mongodb_uri)
    db = stk.ConstructedMoleculeMongoDb(client)
    fitness_db = stk.ValueMongoDb(client, 'fitness_values')

    # Plot selections.
    generation_selector = stk.Best(
        num_batches=25,
        duplicate_molecules=False,
    )
    stk.SelectionPlotter('generation_selection', generation_selector)

    mutation_selector = stk.Roulette(
        num_batches=5,
        random_seed=generator.randint(0, 1000),
    )
    stk.SelectionPlotter('mutation_selection', mutation_selector)

    crossover_selector = stk.Roulette(
        num_batches=3,
        batch_size=2,
        random_seed=generator.randint(0, 1000),
    )
    stk.SelectionPlotter('crossover_selection', crossover_selector)

    fitness_calculator = stk.PropertyVector(
        property_functions=(
            get_num_rotatable_bonds,
            get_complexity,
            get_num_bad_rings,
        ),
        input_database=fitness_db,
        output_database=fitness_db,
    )

    fitness_normalizer = stk.NormalizerSequence(
        fitness_normalizers=(
            # Prevent division by 0 error in DivideByMean, by ensuring
            # a value of each property to be at least 1.
            stk.Add((1, 1, 1)),
            stk.DivideByMean(),
            # Obviously, because all coefficients are equal, the
            # Multiply normalizer does not need to be here. However,
            # it's here to show that you can easily change the relative
            # importance of each component of the fitness value, by
            # changing the values of the coefficients.
            stk.Multiply((1, 1, 1)),
            stk.Sum(),
            stk.Power(-1),
        ), )

    ea = stk.EvolutionaryAlgorithm(
        num_processes=1,
        initial_population=initial_population,
        fitness_calculator=fitness_calculator,
        mutator=stk.RandomMutator(
            mutators=(
                stk.RandomBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.RandomBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
            ),
            random_seed=generator.randint(0, 1000),
        ),
        crosser=stk.GeneticRecombination(get_gene=get_functional_group_type, ),
        generation_selector=generation_selector,
        mutation_selector=mutation_selector,
        crossover_selector=crossover_selector,
        fitness_normalizer=fitness_normalizer,
    )

    logger.info('Starting EA.')

    generations = []
    for generation in ea.get_generations(50):
        for record in generation.get_molecule_records():
            db.put(record.get_molecule())
        generations.append(generation)

    # Write the final population.
    for i, record in enumerate(generation.get_molecule_records()):
        write(record.get_molecule(), f'final_{i}.mol')

    logger.info('Making fitness plot.')

    # Normalize the fitness values across the entire EA before
    # plotting the fitness values.
    generations = tuple(
        normalize_generations(
            fitness_calculator=fitness_calculator,
            fitness_normalizer=fitness_normalizer,
            generations=generations,
        ))

    fitness_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: record.get_fitness_value(),
        y_label='Fitness Value',
    )
    fitness_progress.write('fitness_progress.png')
    fitness_progress.get_plot_data().to_csv('fitness_progress.csv')

    logger.info('Making rotatable bonds plot.')

    rotatable_bonds_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: get_num_rotatable_bonds(record.
                                                            get_molecule()),
        y_label='Number of Rotatable Bonds',
    )
    rotatable_bonds_progress.write('rotatable_bonds_progress.png')