return penal cost_label = 'quadratic cost' ### Create the system description: searev_sys = SysDescription((3, 1, 1), name='Searev + Storage') searev_sys.dyn = dyn_searev_sto searev_sys.control_box = admissible_controls searev_sys.cost = cost_model searev_sys.perturb_laws = [innov_law] #searev_sys.print_summary() ### Create the DP solver: dpsolv = DPSolver(searev_sys) # discretize the state space N_E = 31 N_S = 61 N_A = 61 S_min, S_max = -4 * .254, 4 * 0.254 A_min, A_max = -4 * .227, 4 * .227 x_grid = dpsolv.discretize_state(0, E_rated, N_E, S_min, S_max, N_S, A_min, A_max, N_A) E_grid, S_grid, A_grid = x_grid # discretize the perturbation N_w = 9 dpsolv.discretize_perturb(-3 * innov_std, 3 * innov_std, N_w) # control discretization step: dpsolv.control_steps = (.001, )
penal = P_grid_over**2 + P_grid_neg**2 + 0 * P_sto**2 return penal ### Create the system description: sto_sys = SysDescription((1, 1, 0), name='Deterministic Storage for PV', stationnary=False) sto_sys.dyn = dyn_sto sto_sys.control_box = admissible_controls sto_sys.cost = cost_model sto_sys.print_summary() ### Create the DP solver: dpsolv = DPSolver(sto_sys) # discretize the state space N_E = 50 E_grid = dpsolv.discretize_state(0, E_rated, N_E)[0] dpsolv.control_steps = (.001, ) dpsolv.print_summary() J_fin = np.zeros(N_E) J, pol = dpsolv.bellman_recursion(T_horiz, J_fin) pol_sto = pol[..., 0] ### Plot the policy
# Test of the cost function op_cost(1, 1, 0) # Vectorized cost computation capability (required): op_cost(np.array([-2, -1, 0, 1, 2]), 1, 0) invsys.cost = op_cost #invsys.print_summary() print('Invertory Control with (h={:.1f}, p={:.1f}, c={:.1f})'.format(h, p, c)) ### DP Solver ################################################################## from stodynprog import DPSolver dpsolv = DPSolver(invsys) # discretize the state space xmin, xmax = (-3, 6) N_x = xmax - xmin + 1 # number of states dpsolv.discretize_state(xmin, xmax, N_x) # discretize the perturbation N_w = len(demand_values) dpsolv.discretize_perturb(demand_values[0], demand_values[-1], N_w) # control discretization step: dpsolv.control_steps = (1, ) # #dpsolv.print_summary() ### Value iteration
return np.where(x>0, holding, shortage) + order # Test of the cost function op_cost(1,1,0) # Vectorized cost computation capability (required): op_cost(np.array([-2,-1,0,1,2]),1,0) invsys.cost = op_cost #invsys.print_summary() print('Invertory Control with (h={:.1f}, p={:.1f}, c={:.1f})'.format(h,p,c)) ### DP Solver ################################################################## from stodynprog import DPSolver dpsolv = DPSolver(invsys) # discretize the state space xmin, xmax = (-3,6) N_x = xmax-xmin+1 # number of states dpsolv.discretize_state(xmin, xmax, N_x) # discretize the perturbation N_w = len(demand_values) dpsolv.discretize_perturb(demand_values[0], demand_values[-1], N_w) # control discretization step: dpsolv.control_steps=(1,) # #dpsolv.print_summary() ### Value iteration
def optimize(crtReachMovementTask): minimum_movement_length = crtReachMovementTask.minimum_movement_length maximum_movement_length = crtReachMovementTask.maximum_movement_length c = crtReachMovementTask.c target_position = crtReachMovementTask.target_position number_of_iterations = crtReachMovementTask.number_of_iterations #functions defined here inside the optimizer def dyn_inv(x, u, w): 'dynamical equation of the inventory stock `x`. Returns x(k+1).' return (x + u + w, ) def op_cost(x, u, w): 'energy cost' cost = abs(target_position - x) + c * u #cost = abs(20-x)+c*u # print(cost) return cost def admissible_movements(x): 'interval of allowed orders movements(x_k)' U1 = (minimum_movement_length, maximum_movement_length) return (U1, ) # tuple, to support several controls # Attach it to the system description. # Attach the dynamical equation to the system description: movement_sys.dyn = dyn_inv mov_values = [-6, -4, -2, 0, 2, 4, 6] mov_proba = [0.1, 0.1, 0.15, 0.3, 0.15, 0.1, 0.1] demand_law = stats.rv_discrete(values=(mov_values, mov_proba)) demand_law = demand_law.freeze() demand_law.pmf([0, 3]) # Probality Mass Function demand_law.rvs(10) # Random Variables generation movement_sys.perturb_laws = [demand_law ] # a list, to support several perturbations movement_sys.control_box = admissible_movements movement_sys.cost = op_cost print('Movement Control with (c={:.1f})'.format(c)) dpsolv = DPSolver(movement_sys) # discretize the state space xmin, xmax = (0, 100) N_x = xmax - xmin + 1 # number of states dpsolv.discretize_state(xmin, xmax, N_x) # discretize the perturbation N_w = len(mov_values) dpsolv.discretize_perturb(mov_values[0], mov_values[-1], N_w) # control discretization step: dpsolv.control_steps = (1, ) # #dpsolv.print_summary() ### Value iteration J_0 = np.zeros(N_x) # first iteration J, u = dpsolv.value_iteration(J_0) print(u[..., 0]) for i in xrange(number_of_iterations): J, u = dpsolv.value_iteration(J) # print(u[...,0]) return [movement_sys, dpsolv, u]
''' P_req = p['P_req_data'][k] P_dev = P_req - P_sto penal = P_dev**2 return penal ### Create the system description: sto_sys = SysDescription((1,1,0), name='Deterministic Storage', stationnary=False) sto_sys.dyn = dyn_sto sto_sys.control_box = admissible_controls sto_sys.cost = cost_model sto_sys.print_summary() ### Create the DP solver: dpsolv = DPSolver(sto_sys) # discretize the state space N_E = 100 E_grid = dpsolv.discretize_state(0, p['E_rated'], N_E)[0] dpsolv.control_steps=(.001,) dpsolv.print_summary() if __name__ == '__main__': ### Solve the problem: # Zero final cost J_fin = np.zeros(N_E) # Solve the problem: J, pol = dpsolv.bellman_recursion(T_horiz, J_fin)
return penal cost_label = "quadratic cost" ### Create the system description: searev_sys = SysDescription((3, 1, 1), name="Searev + Storage") searev_sys.dyn = dyn_searev_sto searev_sys.control_box = admissible_controls searev_sys.cost = cost_model searev_sys.perturb_laws = [innov_law] # searev_sys.print_summary() ### Create the DP solver: dpsolv = DPSolver(searev_sys) # discretize the state space N_E = 31 N_S = 61 N_A = 61 S_min, S_max = -4 * 0.254, 4 * 0.254 A_min, A_max = -4 * 0.227, 4 * 0.227 x_grid = dpsolv.discretize_state(0, E_rated, N_E, S_min, S_max, N_S, A_min, A_max, N_A) E_grid, S_grid, A_grid = x_grid # discretize the perturbation N_w = 9 dpsolv.discretize_perturb(-3 * innov_std, 3 * innov_std, N_w) # control discretization step: dpsolv.control_steps = (0.001,) dpsolv.print_summary()