示例#1
0
def dem(suffix=''):
    # This DEM covers a larger area, but doesn't have the extra processing
    # around the junction
    base_fn = os.path.join(here, "junction-composite-dem.tif")

    if suffix == '':
        jct_fn = os.path.join(here, 'junction-composite-20190117-no_adcp.tif')
    elif suffix == 'smooth':
        jct_fn = os.path.join(here, 'junction-composite-20200603-w_smooth.tif')
    elif suffix == 'smoothadcp':
        jct_fn = os.path.join(here, 'junction-composite-20200604-w_smooth.tif')
    elif suffix == 'smoothadcp2':
        # this includes adcp-derived bathy above the junction, while
        # the above uses dwr multibeam above the junction
        jct_fn = os.path.join(here, 'junction-composite-20200605-w_smooth.tif')
    elif suffix == 'adcp':
        jct_fn = None
    else:
        raise Exception("Unknown bathy suffix/version: %s" % suffix)

    if jct_fn is not None:
        # Specify priority to be sure jct fn wins out
        f = field.MultiRasterField([(jct_fn, 10), (base_fn, 0)])
    else:
        f = field.GdalGrid(base_fn)

    return f
示例#2
0
    def factory(attrs):
        geo_bounds = attrs['geom'].bounds

        if attrs['src_name'].startswith('py:'):
            expr = attrs['src_name'][3:]
            # something like 'ConstantField(-1.0)'
            # a little sneaky... make it look like it's running
            # after a "from stompy.spatial.field import *"
            # and also it gets fields of the shapefile
            field_hash = dict(field.__dict__)
            # convert the attrs into a dict suitable for passing to eval
            attrs_dict = {}
            for name in attrs.dtype.names:
                attrs_dict[name] = attrs[name]
            return eval(expr, field_hash, attrs_dict)

        # Otherwise assume src_name is a file name or file pattern.
        for p in paths:
            full_path = os.path.join(p, attrs['src_name'])
            files = glob.glob(full_path)
            if len(files) > 1:
                mrf = field.MultiRasterField(files)
                return mrf
            elif len(files) == 1:
                gg = field.GdalGrid(files[0], geo_bounds=geo_bounds)
                gg.default_interpolation = 'linear'
                return gg

        log.warning("Source %s was not found -- ignoring" % attrs['src_name'])
        return None
示例#3
0
def dem():
    srcs = [
        os.path.join(
            data_root,
            "bathy_interp/master2017/tiles_2m_20171024/merged_2m.tif"),
        os.path.join(data_root, "bathy_dwr/gtiff/dem_bay_delta*.tif"),
        os.path.join(data_root,
                     "ncei/coastal_relief-farallones_clip-utm-merge.tif")
    ]
    mrf = field.MultiRasterField(srcs)
    return mrf
示例#4
0
def factory(attrs):
    geo_bounds = attrs['geom'].bounds

    if attrs['src_name'] == 'dwr_2m_dems':
        mrf = field.MultiRasterField([os.path.join(dwr_dem_path, "*_2m*tif")])
        return mrf
    elif attrs['src_name'] == 'dwr_10m_dems':
        #mrf=field.MultiRasterField([os.path.join(dwr_dem_path,"dem_bay_delta_10m_v3_20121109_*.tif")])
        # In this case there is only one that matters -- tile 4.
        gg = field.GdalGrid(os.path.join(
            dwr_dem_path, "dem_bay_delta_10m_v3_20121109_4.tif"),
                            geo_bounds=geo_bounds)
        gg.default_interpolation = 'linear'
        return gg
    elif attrs['src_name'].endswith('.tif'):
        for p in tif_paths:
            fn = opj(p, attrs['src_name'])
            if os.path.exists(fn):
                gg = field.GdalGrid(fn, geo_bounds=geo_bounds)
                gg.default_interpolation = 'linear'
                return gg
        raise Exception("Could not find tif %s" % attrs['src_name'])
    elif attrs['src_name'].startswith('py:'):
        expr = attrs['src_name'][3:]
        # something like 'ConstantField(-1.0)'
        # a little sneaky... make it look like it's running
        # after a "from stompy.spatial.field import *"
        # and also it gets fields of the shapefile
        field_hash = dict(field.__dict__)
        # convert the attrs into a dict suitable for passing to eval
        attrs_dict = {}
        for name in attrs.dtype.names:
            attrs_dict[name] = attrs[name]
        return eval(expr, field_hash, attrs_dict)

    assert False
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import cm, collections

import numpy as np
from shapely import ops
##

upper_ll = [-120.930408, 37.309940]
lower_ll = [-121.271098, 37.691794]
release_xy = proj_utils.mapper('WGS84', 'EPSG:26910')([upper_ll, lower_ll])

##

dem_mrg = field.MultiRasterField([
    "../../../bathy/junction-composite-20200605-w_smooth.tif",
    "/home/rusty/data/bathy_dwr/gtiff/dem_bay_delta_10m_v3_20121109_2.tif"
])
clip = (646390., 648336., 4184677., 4187210.)
dem = dem_mrg.extract_tile(clip)

##

aerial = field.GdalGrid(
    "../../../gis/aerial/m_3712114_sw_10_h_20160621_20161004-UTM.tif")
aerial.F = aerial.F[:, :, :3]  # drop alpha - seems mis-scaled

##

#grid=unstructured_grid.UnstructuredGrid.read_ugrid("../../../model/grid/snubby_junction/snubby-06.nc")
grid = unstructured_grid.UnstructuredGrid.read_ugrid(
    "../../../model/suntans/snubby-08-edit60-with_bathysmooth.nc")
示例#6
0
@memoize.memoize()
def lidar_mask():
    mask = np.isfinite(levee_burn().F)

    mask_open = ndimage.binary_dilation(mask, iterations=5)

    lidar_mask = field.SimpleGrid(extents=levee_burn().extents, F=mask_open)
    return lidar_mask


#plt.figure(1).clf() ; lidar_mask.plot()

##

lidar_src = field.MultiRasterField(["../bathy/lidar/tiles/*.tif"])


@memoize.memoize()
def lidar_resamp():
    lidar_resamp_fn = 'lidar-levees.tif'

    if not os.path.exists(lidar_resamp_fn):
        # Will compile the lidar data here:
        lidar_levees = field.SimpleGrid(extents=lidar_mask().extents,
                                        F=np.zeros(lidar_mask().F.shape,
                                                   np.float32))
        lidar_levees.F[:, :] = np.nan

        lidar_resamp = lidar_src.to_grid(bounds=lidar_mask().extents,
                                         dx=lidar_mask().dx,
示例#7
0
from stompy.spatial import field

from stompy.grid import unstructured_grid

g = unstructured_grid.UnTRIM08Grid('junction_29_w_depth_2007.grd')

g.delete_cell_field('subgrid')
g.delete_edge_field('subgrid')

##

# There is too much weird stuff in the depth data on that grid.
# Start over from DEMs

mrf = field.MultiRasterField(["/Users/rusty/data/bathy_dwr/gtiff/*.tif"])

##

edge_xy = g.edges_center()

g.add_edge_field('depth', mrf(edge_xy))

##

g.add_node_field('depth', mrf(g.nodes['x']))

##

from stompy.grid import depth_connectivity

six.moves.reload_module(depth_connectivity)