from multiprocessing import Queue, Pipe, Process, active_children from fpylll import IntegerMatrix, GSO, FPLLL, BKZ from fpylll.tools.bkz_stats import BKZTreeTracer from fpylll.fplll.bkz_param import Strategy, dump_strategies_json from strategizer.bkz import CallbackBKZ from strategizer.bkz import CallbackBKZParam as Param from strategizer.config import logging, git_revision from strategizer.util import chunk_iterator from strategizer.strategizers import PruningStrategizer,\ OneTourPreprocStrategizerFactory, \ TwoTourPreprocStrategizerFactory, \ FourTourPreprocStrategizerFactory, \ ProgressivePreprocStrategizerFactory logger = logging.getLogger(__name__) def find_best(state, fudge=1.01): """ Given an ordered tuple of tuples, return the minimal one, where minimal is determined by first entry. :param state: :param fudge: .. note :: The fudge factor means that we have a bias towards earlier entries. """ best = state[0] for s in state:
# -*- coding: utf-8 -*- u""" .. moduleauthor:: Martin R. Albrecht <*****@*****.**> .. moduleauthor:: Léo Ducas <*****@*****.**> .. moduleauthor:: Marc Stevens <*****@*****.**> """ import pickle from fpylll.tools.benchmark import bench_enumeration from strategizer.config import logging logger = logging.getLogger(__name__) nodes, time = bench_enumeration(55) logger.info(" fplll :: nodes: %12.1f, time: %6.4fs, nodes/s: %12.1f" % (nodes, time, nodes / time)) f = open("mdc.data", "wb") pickle.dump(nodes / time, f) f.close()
# -*- coding: utf-8 -*- u""" .. moduleauthor:: Martin R. Albrecht <*****@*****.**> .. moduleauthor:: Léo Ducas <*****@*****.**> .. moduleauthor:: Marc Stevens <*****@*****.**> """ import pickle from fpylll.tools.benchmark import bench_enumeration from strategizer.config import logging logger = logging.getLogger(__name__) nodes, time = bench_enumeration(44) logger.info(" fplll :: nodes: %12.1f, time: %6.4fs, nodes/s: %12.1f"%(nodes, time, nodes/time)) f = open("mdc.data", "wb") pickle.dump(nodes/time, f) f.close()