示例#1
0
 def test_pre_measure_eng(self, tol):
     """Test that the pre_measure method operates as expected by initializing the engine
     correctly"""
     dev = qml.device("strawberryfields.gbs", wires=4, cutoff_dim=3)
     prog = Program(4)
     op1 = GraphEmbed(0.1767767 * np.ones((4, 4)), mean_photon_per_mode=0.25)
     prog.append(op1, prog.register)
     dev.prog = prog
     dev.pre_measure()
     assert dev.eng.backend_name == "gaussian"
     assert dev.eng.backend_options == {"cutoff_dim": 3}
示例#2
0
    def test_pre_measure_state_and_samples(self, tol):
        """Test that the pre_measure method operates as expected in analytic mode by generating the
        correct output state and not generating samples"""
        dev = qml.device("strawberryfields.gbs", wires=4, cutoff_dim=3)
        prog = Program(4)
        op1 = GraphEmbed(0.1767767 * np.ones((4, 4)), mean_photon_per_mode=0.25)
        prog.append(op1, prog.register)
        dev.prog = prog
        dev.pre_measure()

        assert np.allclose(dev.state.displacement(), np.zeros(4))
        assert np.allclose(dev.state.cov(), target_cov, atol=tol)
        assert dev.samples.size == 0
示例#3
0
    def apply(self, operation, wires, par):
        self._params, A, n_mean = par
        A *= rescale(A, n_mean)
        self.Z_inv = self._calculate_z_inv(A)

        if len(self._params) != self.num_wires:
            raise ValueError(
                "The number of variable parameters must be equal to the total number of wires."
            )

        self._WAW = self.calculate_WAW(self._params, A)

        if self.shots is not None and self._use_cache:
            op = GraphEmbed(A, mean_photon_per_mode=n_mean / len(A))
        else:
            n_mean_WAW = self.calculate_n_mean(self._WAW)
            op = GraphEmbed(self._WAW, mean_photon_per_mode=n_mean_WAW / len(A))

        op | [self.q[wires.index(i)] for i in wires]

        if self.shots is not None:
            MeasureFock() | [self.q[wires.index(i)] for i in wires]
示例#4
0
    def test_pre_measure_state_and_samples_non_analytic(self, tol):
        """Test that the pre_measure method operates as expected in non-analytic mode by
        generating the correct output state and samples of the right shape"""
        dev = qml.device("strawberryfields.gbs", wires=4, cutoff_dim=3, analytic=False, shots=2)
        prog = Program(4)
        op1 = GraphEmbed(0.1767767 * np.ones((4, 4)), mean_photon_per_mode=0.25)
        op2 = MeasureFock()
        prog.append(op1, prog.register)
        prog.append(op2, prog.register)
        dev.prog = prog
        dev.pre_measure()

        assert np.allclose(dev.state.displacement(), np.zeros(4))
        assert np.allclose(dev.state.cov(), target_cov, atol=tol)
        assert dev.samples.shape == (2, 4)
示例#5
0
 def test_pre_measure_non_analytic_cache(self, mocker):
     """Test that the pre_measure method does not overwrite existing samples if present in
     non-analytic mode when use_cache is ``True``"""
     samples = -1 * np.ones((10, 4))
     dev = qml.device(
         "strawberryfields.gbs",
         wires=4,
         cutoff_dim=3,
         shots=10,
         samples=samples,
         use_cache=True,
     )
     prog = Program(4)
     op1 = GraphEmbed(0.1767767 * np.ones((4, 4)), mean_photon_per_mode=0.25)
     op2 = MeasureFock()
     prog.append(op1, prog.register)
     prog.append(op2, prog.register)
     dev.prog = prog
     dev.pre_measure()
     spy = mocker.spy(sf.Engine, "run")
     assert np.allclose(dev.samples, samples)
     spy.assert_not_called()