def test_squeezing(self): """Test squeezing gives correct means and cov""" self.eng.reset() q = self.eng.register x = 0.2 p = 0.3 r = 0.42 phi = 0.123 H, t = squeezing(r, phi, hbar=self.hbar) with self.eng: Xgate(x) | q[0] Zgate(p) | q[0] GaussianPropagation(H, t) | q[0] state = self.eng.run('gaussian') # test the covariance matrix res = state.cov() S = rot(phi / 2) @ np.diag(np.exp([-r, r])) @ rot(phi / 2).T V = S @ S.T * self.hbar / 2 self.assertTrue(np.allclose(res, V)) # test the vector of means res = state.means() exp = S @ np.array([x, p]) self.assertTrue(np.allclose(res, exp))
def test_rotation(self): """Test rotation gives correct means and cov""" self.eng.reset() q = self.eng.register x = 0.2 p = 0.3 phi = 0.123 H, t = rotation(phi, hbar=self.hbar) with self.eng: Xgate(x) | q[0] Zgate(p) | q[0] Sgate(2) | q[0] GaussianPropagation(H, t) | q[0] state = self.eng.run('gaussian') # test the covariance matrix res = state.cov() V = np.diag([np.exp(-4), np.exp(4)]) * self.hbar / 2 expected = rot(phi) @ V @ rot(phi).T self.assertTrue(np.allclose(res, expected)) # test the vector of means res = state.means() exp = rot(phi) @ np.diag(np.exp([-2, 2])) @ np.array([x, p]) self.assertTrue(np.allclose(res, exp))
def test_quadratic_phase(self): """Test quadratic phase gives correct means and cov""" self.eng.reset() q = self.eng.register x = 0.2 p = 0.3 s = 0.432 H, t = quadratic_phase(s) with self.eng: Xgate(x) | q[0] Zgate(p) | q[0] GaussianPropagation(H, t) | q[0] state = self.eng.run('gaussian') # test the covariance matrix res = state.cov() expected = np.array([[1, s], [s, 1 + s**2]]) * self.hbar / 2 self.assertTrue(np.allclose(res, expected)) # test the vector of means res = state.means() expected = np.array([x, p + s * x]) self.assertTrue(np.allclose(res, expected))
def test_displaced_oscillator(self): """Test that a forced quantum oscillator produces the correct self.logTestName() trajectory in the phase space""" H = QuadOperator('q0 q0', 0.5) H += QuadOperator('p0 p0', 0.5) H -= QuadOperator('q0', self.F) res = [] tlist = np.arange(0, self.t, self.dt) for t in tlist: #pylint: disable=unused-variable self.eng.reset() q = self.eng.register with self.eng: Xgate(self.x0) | q[0] Zgate(self.p0) | q[0] GaussianPropagation(H, self.t) | q state = self.eng.run('gaussian') res.append(state.means().tolist()) res = np.array(res)[-1] expected = self.displaced_oscillator_soln(self.t) self.assertTrue(np.allclose(res, expected))
def test_rotation(self, hbar): """Test rotation gives correct means and cov""" prog = sf.Program(1) eng = sf.Engine("gaussian") x = 0.2 p = 0.3 phi = 0.123 H, t = rotation(phi, hbar=hbar) with prog.context as q: Xgate(x) | q[0] Zgate(p) | q[0] Sgate(2) | q[0] GaussianPropagation(H, t) | q[0] state = eng.run(prog).state # test the covariance matrix res = state.cov() V = np.diag([np.exp(-4), np.exp(4)]) * hbar / 2 expected = rot(phi) @ V @ rot(phi).T assert np.allclose(res, expected) # test the vector of means res = state.means() exp = rot(phi) @ np.diag(np.exp([-2, 2])) @ np.array([x, p]) assert np.allclose(res, exp)
def test_squeezing(self, hbar): """Test squeezing gives correct means and cov""" prog = sf.Program(1) eng = sf.Engine("gaussian") x = 0.2 p = 0.3 r = 0.42 phi = 0.123 H, t = squeezing(r, phi, hbar=hbar) with prog.context as q: Xgate(x) | q[0] Zgate(p) | q[0] GaussianPropagation(H, t) | q[0] state = eng.run(prog).state # test the covariance matrix res = state.cov() S = rot(phi / 2) @ np.diag(np.exp([-r, r])) @ rot(phi / 2).T V = S @ S.T * hbar / 2 assert np.allclose(res, V) # test the vector of means res = state.means() exp = S @ np.array([x, p]) assert np.allclose(res, exp)
def test_displaced_oscillator(self): """Test that a forced quantum oscillator produces the correct self.logTestName() trajectory in the phase space""" H = QuadOperator('q0 q0', 0.5) H += QuadOperator('p0 p0', 0.5) H -= QuadOperator('q0', self.F) res = [] tlist = np.arange(0, self.t, self.dt) eng = sf.Engine("gaussian") for idx, t in enumerate(tlist): #pylint: disable=unused-variable prog = sf.Program(1) with prog.context as q: Xgate(self.x0) | q[0] Zgate(self.p0) | q[0] GaussianPropagation(H, self.t) | q state = eng.run(prog).state eng.reset() res.append(state.means().tolist()) res = np.array(res)[-1] expected = self.displaced_oscillator_soln(self.t) assert np.allclose(res, expected)
def test_quadratic_phase(self, hbar): """Test quadratic phase gives correct means and cov""" prog = sf.Program(1) eng = sf.Engine("gaussian") x = 0.2 p = 0.3 s = 0.432 H, t = quadratic_phase(s) with prog.context as q: Xgate(x) | q[0] Zgate(p) | q[0] GaussianPropagation(H, t) | q[0] state = eng.run(prog).state # test the covariance matrix res = state.cov() expected = np.array([[1, s], [s, 1 + s**2]]) * hbar / 2 assert np.allclose(res, expected) # test the vector of means res = state.means() expected = np.array([x, p + s * x]) assert np.allclose(res, expected)
def init_layer(q): """Create an initial state with defined squeezing and displacement""" Xgate(0.2) | q[0] Xgate(0.4) | q[1] Zgate(0.3) | q[1] Sgate(0.1) | q[0] Sgate(-0.1) | q[1] return q
def decompose(self, reg): """Return the decomposed commands""" cmds = [] cmds += [Command(GaussianTransform(self.S), reg)] if self.disp: cmds += [ Command(Xgate(x), reg) for x in self.d[:self.ns] if x != 0. ] cmds += [ Command(Zgate(z), reg) for z in self.d[self.ns:] if z != 0. ] return cmds
r = np.abs(alpha) phi = np.angle(alpha) with prog.context as q: # prepare initial states Coherent(r, phi) | q[0] Squeezed(-2) | q[1] Squeezed(2) | q[2] # apply gates BS = BSgate(pi / 4, 0) BS | (q[1], q[2]) BS | (q[0], q[1]) # Perform homodyne measurements MeasureX | q[0] MeasureP | q[1] # Displacement gates conditioned on # the measurements Xgate(sqrt(2) * q[0].par) | q[2] Zgate(sqrt(2) * q[1].par) | q[2] eng = sf.Engine("fock", backend_options={"cutoff_dim": 15}) result = eng.run(prog) # view output state and fidelity print(result.samples) print(result.state) print(result.state.fidelity_coherent([0, 0, alpha]))