def __init__(self, context, enable_alert_processor=True): """ Args: context: An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor (bool): If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ # Load the config. Validation occurs during load, which will # raise exceptions on any ConfigErrors config = load_config() # Load the environment from the context arn self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the # alert processor self.sinker = StreamSink(self.env) # Instantiate a classifier that is used for this run self.classifier = StreamClassifier(config=config) self.enable_alert_processor = enable_alert_processor self._failed_record_count = 0 self._alerts = []
def __init__(self, context, return_alerts=False): """ Args: context: An AWS context object which provides metadata on the currently executing lambda function. return_alerts: If the user wants to handle the sinking of alerts to external endpoints, return a list of generated alerts. """ self.return_alerts = return_alerts self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the alert processor self.sinker = StreamSink(self.env) self.alerts = []
def __init__(self, context, enable_alert_processor=True): """ Args: context: An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor: If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ self.env = load_env(context) self.enable_alert_processor = enable_alert_processor # Instantiate the sink here to handle sending the triggered alerts to the alert processor self.sinker = StreamSink(self.env) self._failed_record_count = 0 self._alerts = []
def setup_class(cls): """Setup the class before any methods""" patcher = patch('stream_alert.rule_processor.sink.boto3.client') cls.boto_mock = patcher.start() context = get_mock_context() env = load_env(context) cls.sinker = StreamSink(env)
def send_alerts(self, env, payload): """Send generated alerts to correct places""" if self.alerts: if env['lambda_alias'] == 'development': logger.info('%s alerts triggered', len(self.alerts)) logger.info('\n%s\n', json.dumps(self.alerts, indent=4)) else: StreamSink(self.alerts, env).sink() elif payload.valid: logger.debug('Valid data, no alerts')
def __init__(self, context, enable_alert_processor=True): """Initializer Args: context (dict): An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor (bool): If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ # Load the config. Validation occurs during load, which will # raise exceptions on any ConfigErrors StreamAlert.config = StreamAlert.config or load_config() # Load the environment from the context arn self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the # alert processor self.sinker = StreamSink(self.env) # Instantiate a classifier that is used for this run self.classifier = StreamClassifier(config=self.config) self.enable_alert_processor = enable_alert_processor self._failed_record_count = 0 self._processed_size = 0 self._alerts = [] # Create a dictionary to hold parsed payloads by log type. # Firehose needs this information to send to its corresponding # delivery stream. self.categorized_payloads = defaultdict(list) # Firehose client initialization self.firehose_client = None # create an instance of the StreamRules class that gets cached in the # StreamAlert class as an instance property self._rule_engine = StreamRules(self.config)
class StreamAlert(object): """Wrapper class for handling StreamAlert classificaiton and processing""" config = {} # Used to detect special characters in payload keys. # This is necessary for sanitization of data prior to searching in Athena. special_char_regex = re.compile(r'\W') special_char_sub = '_' def __init__(self, context, enable_alert_processor=True): """Initializer Args: context (dict): An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor (bool): If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ # Load the config. Validation occurs during load, which will # raise exceptions on any ConfigErrors StreamAlert.config = StreamAlert.config or load_config() # Load the environment from the context arn self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the # alert processor self.sinker = StreamSink(self.env) # Instantiate a classifier that is used for this run self.classifier = StreamClassifier(config=self.config) self.enable_alert_processor = enable_alert_processor self._failed_record_count = 0 self._processed_size = 0 self._alerts = [] # Create a dictionary to hold parsed payloads by log type. # Firehose needs this information to send to its corresponding # delivery stream. self.categorized_payloads = defaultdict(list) # Firehose client initialization self.firehose_client = None StreamThreatIntel.load_intelligence(self.config) def run(self, event): """StreamAlert Lambda function handler. Loads the configuration for the StreamAlert function which contains available data sources, log schemas, normalized types, and outputs. Classifies logs sent into a parsed type. Matches records against rules. Args: event (dict): An AWS event mapped to a specific source/entity containing data read by Lambda. Returns: bool: True if all logs being parsed match a schema """ records = event.get('Records', []) LOGGER.debug('Number of Records: %d', len(records)) if not records: return False MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TOTAL_RECORDS, len(records)) firehose_config = self.config['global'].get( 'infrastructure', {}).get('firehose', {}) if firehose_config.get('enabled'): self.firehose_client = boto3.client('firehose', region_name=self.env['lambda_region']) for raw_record in records: # Get the service and entity from the payload. If the service/entity # is not in our config, log and error and go onto the next record service, entity = self.classifier.extract_service_and_entity(raw_record) if not service: LOGGER.error('No valid service found in payload\'s raw record. Skipping ' 'record: %s', raw_record) continue if not entity: LOGGER.error( 'Unable to extract entity from payload\'s raw record for service %s. ' 'Skipping record: %s', service, raw_record) continue # Cache the log sources for this service and entity on the classifier if not self.classifier.load_sources(service, entity): continue # Create the StreamPayload to use for encapsulating parsed info payload = load_stream_payload(service, entity, raw_record) if not payload: continue self._process_alerts(payload) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TOTAL_PROCESSED_SIZE, self._processed_size) LOGGER.debug('Invalid record count: %d', self._failed_record_count) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FAILED_PARSES, self._failed_record_count) LOGGER.debug('%s alerts triggered', len(self._alerts)) MetricLogger.log_metric( FUNCTION_NAME, MetricLogger.TRIGGERED_ALERTS, len( self._alerts)) # Check if debugging logging is on before json dumping alerts since # this can be time consuming if there are a lot of alerts if self._alerts and LOGGER.isEnabledFor(LOG_LEVEL_DEBUG): LOGGER.debug('Alerts:\n%s', json.dumps(self._alerts, indent=2)) if self.firehose_client: self._send_to_firehose() return self._failed_record_count == 0 def get_alerts(self): """Public method to return alerts from class. Useful for testing. Returns: list: list of alerts as dictionaries """ return self._alerts @staticmethod def _segment_records_by_count(record_list, max_count): """Segment records by length Args: record_list (list): The original records list to be segmented max_count (int): The max amount of records to yield per group """ for index in range(0, len(record_list), max_count): yield record_list[index:index + max_count] def _segment_records_by_size(self, record_batch): """Segment record groups by size Args: record_batch (list): The original record batch to measure and segment Returns: generator: Used to iterate on each newly segmented group """ split_factor = 1 len_batch = len(record_batch) # Sample the first batch of records to determine the split factor. # Generally, it's very rare for a group of records to have # drastically different sizes in a single Lambda invocation. while len(json.dumps(record_batch[:len_batch / split_factor], separators=(",", ":"))) > MAX_BATCH_SIZE: split_factor += 1 return self._segment_records_by_count(record_batch, len_batch / split_factor) @staticmethod def _limit_record_size(batch): """Limit the record size to be sent to Firehose Args: batch (list): Record batch to iterate on """ for index, record in enumerate(batch): if len(json.dumps(record, separators=(",", ":"))) > MAX_RECORD_SIZE: # Show the first 1k bytes in order to not overload # CloudWatch logs LOGGER.error('The following record is too large' 'be sent to Firehose: %s', str(record)[:1000]) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FIREHOSE_FAILED_RECORDS, 1) batch.pop(index) @classmethod def sanitize_keys(cls, record): """Remove special characters from parsed record keys This is required when searching in Athena. Keys can only have a period or underscore Args: record (dict): Original parsed record Returns: dict: A sanitized record """ new_record = {} for key, value in record.iteritems(): sanitized_key = re.sub(cls.special_char_regex, cls.special_char_sub, key) # Handle nested objects if isinstance(value, dict): new_record[sanitized_key] = cls.sanitize_keys(record[key]) else: new_record[sanitized_key] = record[key] return new_record def _firehose_request_helper(self, stream_name, record_batch): """Send record batches to Firehose Args: stream_name (str): The name of the Delivery Stream to send to record_batch (list): The records to send """ record_batch_size = len(record_batch) resp = {} try: LOGGER.debug('Sending %d records to Firehose:%s', record_batch_size, stream_name) resp = self.firehose_client.put_record_batch( DeliveryStreamName=stream_name, # The newline at the end is required by Firehose, # otherwise all records will be on a single line and # unsearchable in Athena. Records=[{'Data': json.dumps(self.sanitize_keys(record), separators=(",", ":")) + '\n'} for record in record_batch]) except ClientError as firehose_err: LOGGER.error(firehose_err) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FIREHOSE_FAILED_RECORDS, record_batch_size) return # Error handle if failures occured in PutRecordBatch # TODO(jack) implement backoff here for additional message reliability if resp.get('FailedPutCount') > 0: failed_records = [failed for failed in resp['RequestResponses'] if failed.get('ErrorCode')] MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FIREHOSE_FAILED_RECORDS, resp['FailedPutCount']) # Only print the first 100 failed records to Cloudwatch logs LOGGER.error('The following records failed to Put to the' 'Delivery stream %s: %s', stream_name, json.dumps(failed_records[:100], indent=2)) else: MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FIREHOSE_RECORDS_SENT, record_batch_size) LOGGER.info('Successfully sent %d messages to Firehose:%s', record_batch_size, stream_name) def _send_to_firehose(self): """Send all classified records to a respective Firehose Delivery Stream""" delivery_stream_name_pattern = 'streamalert_data_{}' # Iterate through each payload type for log_type, records in self.categorized_payloads.items(): # This same method is used when naming the Delivery Streams formatted_log_type = log_type.replace(':', '_') for record_batch in self._segment_records_by_count(records, MAX_BATCH_COUNT): stream_name = delivery_stream_name_pattern.format(formatted_log_type) self._limit_record_size(record_batch) for sized_batch in self._segment_records_by_size(record_batch): self._firehose_request_helper(stream_name, sized_batch) def _process_alerts(self, payload): """Process records for alerts and send them to the correct places Args: payload (StreamPayload): StreamAlert payload object being processed """ for record in payload.pre_parse(): # Increment the processed size using the length of this record self._processed_size += len(record.pre_parsed_record) self.classifier.classify_record(record) if not record.valid: if self.env['lambda_alias'] != 'development': LOGGER.error('Record does not match any defined schemas: %s\n%s', record, record.pre_parsed_record) self._failed_record_count += 1 continue LOGGER.debug( 'Classified and Parsed Payload: <Valid: %s, Log Source: %s, Entity: %s>', record.valid, record.log_source, record.entity) record_alerts = StreamRules.process(record) LOGGER.debug('Processed %d valid record(s) that resulted in %d alert(s).', len(payload.records), len(record_alerts)) # Add all parsed records to the categorized payload dict # only if Firehose is enabled if self.firehose_client: # Only send payloads with enabled types if payload.log_source.split(':')[0] not in self.config['global'] \ ['infrastructure'].get('firehose', {}).get('disabled_logs', []): self.categorized_payloads[payload.log_source].extend(payload.records) if not record_alerts: continue # Extend the list of alerts with any new ones so they can be returned self._alerts.extend(record_alerts) if self.enable_alert_processor: self.sinker.sink(record_alerts)
class StreamAlert(object): """Wrapper class for handling all StreamAlert classificaiton and processing""" def __init__(self, context, enable_alert_processor=True): """ Args: context: An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor: If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ self.env = load_env(context) self.enable_alert_processor = enable_alert_processor # Instantiate the sink here to handle sending the triggered alerts to the alert processor self.sinker = StreamSink(self.env) self._failed_record_count = 0 self._alerts = [] def run(self, event): """StreamAlert Lambda function handler. Loads the configuration for the StreamAlert function which contains: available data sources, log formats, parser modes, and sinks. Classifies logs sent into the stream into a parsed type. Matches records against rules. Args: event: An AWS event mapped to a specific source/entity (kinesis stream or an s3 bucket event) containing data emitted to the stream. Returns: [boolean] True if all logs being parsed match a schema """ LOGGER.debug('Number of Records: %d', len(event.get('Records', []))) config = load_config() for record in event.get('Records', []): payload = StreamPayload(raw_record=record) classifier = StreamClassifier(config=config) # If the kinesis stream, s3 bucket, or sns topic is not in our config, # go onto the next record if not classifier.map_source(payload): continue if payload.service == 's3': self._s3_process(payload, classifier) elif payload.service == 'kinesis': self._kinesis_process(payload, classifier) elif payload.service == 'sns': self._sns_process(payload, classifier) else: LOGGER.error('Unsupported service: %s', payload.service) LOGGER.debug('%s alerts triggered', len(self._alerts)) LOGGER.debug('\n%s\n', json.dumps(self._alerts, indent=4)) return self._failed_record_count == 0 def get_alerts(self): """Public method to return alerts from class. Useful for testing. Returns: [list] list of alerts as dictionaries """ return self._alerts def _kinesis_process(self, payload, classifier): """Process Kinesis data for alerts""" data = StreamPreParsers.pre_parse_kinesis(payload.raw_record) self._process_alerts(classifier, payload, data) def _s3_process(self, payload, classifier): """Process S3 data for alerts""" s3_file, s3_object_size = StreamPreParsers.pre_parse_s3(payload.raw_record) count, processed_size = 0, 0 for data in StreamPreParsers.read_s3_file(s3_file): payload.refresh_record(data) self._process_alerts(classifier, payload, data) # Add the current data to the total processed size, +1 to account for line feed processed_size += (len(data) + 1) count += 1 # Log an info message on every 100 lines processed if count % 100 == 0: avg_record_size = ((processed_size - 1) / count) approx_record_count = s3_object_size / avg_record_size LOGGER.info('Processed %s records out of an approximate total of %s ' '(average record size: %s bytes, total size: %s bytes)', count, approx_record_count, avg_record_size, s3_object_size) def _sns_process(self, payload, classifier): """Process SNS data for alerts""" data = StreamPreParsers.pre_parse_sns(payload.raw_record) self._process_alerts(classifier, payload, data) def _process_alerts(self, classifier, payload, data): """Process records for alerts and send them to the correct places Args: classifier [StreamClassifier]: Handler for classifying a record's data payload [StreamPayload]: StreamAlert payload object being processed data [string]: Pre parsed data string from a raw_event to be parsed """ classifier.classify_record(payload, data) if not payload.valid: if self.env['lambda_alias'] != 'development': LOGGER.error('Record does not match any defined schemas: %s\n%s', payload, data) self._failed_record_count += 1 return alerts = StreamRules.process(payload) LOGGER.debug('Processed %d valid record(s) that resulted in %d alert(s).', len(payload.records), len(alerts)) if not alerts: return # Extend the list of alerts with any new ones so they can be returned self._alerts.extend(alerts) if self.enable_alert_processor: self.sinker.sink(alerts)
class StreamAlert(object): """Wrapper class for handling StreamAlert classificaiton and processing""" __config = {} def __init__(self, context, enable_alert_processor=True): """Initializer Args: context (dict): An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor (bool): If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ # Load the config. Validation occurs during load, which will # raise exceptions on any ConfigErrors StreamAlert.__config = StreamAlert.__config or load_config() # Load the environment from the context arn self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the # alert processor self.sinker = StreamSink(self.env) # Instantiate a classifier that is used for this run self.classifier = StreamClassifier(config=self.__config) self.enable_alert_processor = enable_alert_processor self._failed_record_count = 0 self._processed_size = 0 self._alerts = [] # Create a dictionary to hold parsed payloads by log type. # Firehose needs this information to send to its corresponding # delivery stream. self.categorized_payloads = defaultdict(list) # Firehose client initialization self.firehose_client = None def run(self, event): """StreamAlert Lambda function handler. Loads the configuration for the StreamAlert function which contains available data sources, log schemas, normalized types, and outputs. Classifies logs sent into a parsed type. Matches records against rules. Args: event (dict): An AWS event mapped to a specific source/entity containing data read by Lambda. Returns: bool: True if all logs being parsed match a schema """ records = event.get('Records', []) LOGGER.debug('Number of Records: %d', len(records)) if not records: return False MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TOTAL_RECORDS, len(records)) firehose_config = self.__config['global'].get( 'infrastructure', {}).get('firehose', {}) if firehose_config.get('enabled'): self.firehose_client = boto3.client('firehose', region_name=self.env['lambda_region']) for raw_record in records: # Get the service and entity from the payload. If the service/entity # is not in our config, log and error and go onto the next record service, entity = self.classifier.extract_service_and_entity(raw_record) if not service: LOGGER.error('No valid service found in payload\'s raw record. Skipping ' 'record: %s', raw_record) continue if not entity: LOGGER.error( 'Unable to extract entity from payload\'s raw record for service %s. ' 'Skipping record: %s', service, raw_record) continue # Cache the log sources for this service and entity on the classifier if not self.classifier.load_sources(service, entity): continue # Create the StreamPayload to use for encapsulating parsed info payload = load_stream_payload(service, entity, raw_record) if not payload: continue self._process_alerts(payload) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TOTAL_PROCESSED_SIZE, self._processed_size) LOGGER.debug('Invalid record count: %d', self._failed_record_count) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FAILED_PARSES, self._failed_record_count) LOGGER.debug('%s alerts triggered', len(self._alerts)) MetricLogger.log_metric( FUNCTION_NAME, MetricLogger.TRIGGERED_ALERTS, len( self._alerts)) # Check if debugging logging is on before json dumping alerts since # this can be time consuming if there are a lot of alerts if self._alerts and LOGGER.isEnabledFor(LOG_LEVEL_DEBUG): LOGGER.debug('Alerts:\n%s', json.dumps(self._alerts, indent=2)) if self.firehose_client: self._send_to_firehose() return self._failed_record_count == 0 def get_alerts(self): """Public method to return alerts from class. Useful for testing. Returns: list: list of alerts as dictionaries """ return self._alerts def _send_to_firehose(self): """Send all classified records to a respective Firehose Delivery Stream""" def _chunk(record_list, chunk_size): """Helper function to chunk payloads""" for item in range(0, len(record_list), chunk_size): yield record_list[item:item + chunk_size] def _check_record_batch(batch): """Helper function to verify record size""" for index, record in enumerate(batch): if len(str(record)) > MAX_RECORD_SIZE: # Show the first 1k bytes in order to not overload # CloudWatch logs LOGGER.error('The following record is too large' 'be sent to Firehose: %s', str(record)[:1000]) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FIREHOSE_FAILED_RECORDS, 1) batch.pop(index) delivery_stream_name_pattern = 'streamalert_data_{}' # Iterate through each payload type for log_type, records in self.categorized_payloads.items(): # This same method is used when naming the Delivery Streams formatted_log_type = log_type.replace(':', '_') for record_batch in _chunk(records, MAX_BATCH_SIZE): stream_name = delivery_stream_name_pattern.format(formatted_log_type) _check_record_batch(record_batch) resp = self.firehose_client.put_record_batch( DeliveryStreamName=stream_name, # The newline at the end is required by Firehose, # otherwise all records will be on a single line and # unsearchable in Athena. Records=[{'Data': json.dumps(record, separators=(",", ":")) + '\n'} for record in record_batch]) # Error handle if failures occured # TODO(jack) implement backoff here once the rule processor is split if resp.get('FailedPutCount') > 0: failed_records = [failed for failed in resp['RequestResponses'] if failed.get('ErrorCode')] MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FIREHOSE_FAILED_RECORDS, resp['FailedPutCount']) # Only print the first 100 failed records LOGGER.error('The following records failed to Put to the' 'Delivery stream %s: %s', stream_name, json.dumps(failed_records[:100], indent=2)) else: MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FIREHOSE_RECORDS_SENT, len(record_batch)) LOGGER.info('Successfully sent %d messages to Firehose:%s', len(record_batch), stream_name) def _process_alerts(self, payload): """Process records for alerts and send them to the correct places Args: payload (StreamPayload): StreamAlert payload object being processed """ for record in payload.pre_parse(): # Increment the processed size using the length of this record self._processed_size += len(record.pre_parsed_record) self.classifier.classify_record(record) if not record.valid: if self.env['lambda_alias'] != 'development': LOGGER.error('Record does not match any defined schemas: %s\n%s', record, record.pre_parsed_record) self._failed_record_count += 1 continue LOGGER.debug( 'Classified and Parsed Payload: <Valid: %s, Log Source: %s, Entity: %s>', record.valid, record.log_source, record.entity) record_alerts = StreamRules.process(record) LOGGER.debug('Processed %d valid record(s) that resulted in %d alert(s).', len(payload.records), len(record_alerts)) # Add all parsed records to the categorized payload dict # only if Firehose is enabled if self.firehose_client: self.categorized_payloads[payload.log_source].extend(payload.records) if not record_alerts: continue # Extend the list of alerts with any new ones so they can be returned self._alerts.extend(record_alerts) if self.enable_alert_processor: self.sinker.sink(record_alerts)
class StreamAlert(object): """Wrapper class for handling StreamAlert classificaiton and processing""" config = {} def __init__(self, context, enable_alert_processor=True): """Initializer Args: context (dict): An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor (bool): If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ # Load the config. Validation occurs during load, which will # raise exceptions on any ConfigErrors StreamAlert.config = StreamAlert.config or load_config() # Load the environment from the context arn self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the # alert processor self.sinker = StreamSink(self.env) # Instantiate a classifier that is used for this run self.classifier = StreamClassifier(config=self.config) self.enable_alert_processor = enable_alert_processor self._failed_record_count = 0 self._processed_record_count = 0 self._processed_size = 0 self._alerts = [] # Create an instance of the StreamRules class that gets cached in the # StreamAlert class as an instance property self._rule_engine = StreamRules(self.config) # Firehose client attribute self._firehose_client = None def run(self, event): """StreamAlert Lambda function handler. Loads the configuration for the StreamAlert function which contains available data sources, log schemas, normalized types, and outputs. Classifies logs sent into a parsed type. Matches records against rules. Args: event (dict): An AWS event mapped to a specific source/entity containing data read by Lambda. Returns: bool: True if all logs being parsed match a schema """ records = event.get('Records', []) LOGGER.debug('Number of incoming records: %d', len(records)) if not records: return False firehose_config = self.config['global'].get('infrastructure', {}).get('firehose', {}) if firehose_config.get('enabled'): self._firehose_client = StreamAlertFirehose( self.env['lambda_region'], firehose_config, self.config['logs']) payload_with_normalized_records = [] for raw_record in records: # Get the service and entity from the payload. If the service/entity # is not in our config, log and error and go onto the next record service, entity = self.classifier.extract_service_and_entity( raw_record) if not service: LOGGER.error( 'No valid service found in payload\'s raw record. Skipping ' 'record: %s', raw_record) continue if not entity: LOGGER.error( 'Unable to extract entity from payload\'s raw record for service %s. ' 'Skipping record: %s', service, raw_record) continue # Cache the log sources for this service and entity on the classifier if not self.classifier.load_sources(service, entity): continue # Create the StreamPayload to use for encapsulating parsed info payload = load_stream_payload(service, entity, raw_record) if not payload: continue payload_with_normalized_records.extend( self._process_alerts(payload)) # Log normalized records metric MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.NORMALIZED_RECORDS, len(payload_with_normalized_records)) # Apply Threat Intel to normalized records in the end of Rule Processor invocation record_alerts = self._rule_engine.threat_intel_match( payload_with_normalized_records) self._alerts.extend(record_alerts) if record_alerts and self.enable_alert_processor: self.sinker.sink(record_alerts) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TOTAL_RECORDS, self._processed_record_count) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TOTAL_PROCESSED_SIZE, self._processed_size) LOGGER.debug('Invalid record count: %d', self._failed_record_count) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FAILED_PARSES, self._failed_record_count) LOGGER.debug('%s alerts triggered', len(self._alerts)) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TRIGGERED_ALERTS, len(self._alerts)) # Check if debugging logging is on before json dumping alerts since # this can be time consuming if there are a lot of alerts if self._alerts and LOGGER.isEnabledFor(LOG_LEVEL_DEBUG): LOGGER.debug('Alerts:\n%s', json.dumps(self._alerts, indent=2)) if self._firehose_client: self._firehose_client.send() return self._failed_record_count == 0 def get_alerts(self): """Public method to return alerts from class. Useful for testing. Returns: list: list of alerts as dictionaries """ return self._alerts def _process_alerts(self, payload): """Process records for alerts and send them to the correct places Args: payload (StreamPayload): StreamAlert payload object being processed """ payload_with_normalized_records = [] for record in payload.pre_parse(): # Increment the processed size using the length of this record self._processed_size += len(record.pre_parsed_record) self.classifier.classify_record(record) if not record.valid: if self.env['lambda_alias'] != 'development': LOGGER.error( 'Record does not match any defined schemas: %s\n%s', record, record.pre_parsed_record) self._failed_record_count += 1 continue # Increment the total processed records to get an accurate assessment of throughput self._processed_record_count += len(record.records) LOGGER.debug( 'Classified and Parsed Payload: <Valid: %s, Log Source: %s, Entity: %s>', record.valid, record.log_source, record.entity) record_alerts, normalized_records = self._rule_engine.process( record) payload_with_normalized_records.extend(normalized_records) LOGGER.debug( 'Processed %d valid record(s) that resulted in %d alert(s).', len(payload.records), len(record_alerts)) # Add all parsed records to the categorized payload dict only if Firehose is enabled if self._firehose_client: # Only send payloads with enabled log sources if self._firehose_client.enabled_log_source( payload.log_source): self._firehose_client.categorized_payloads[ payload.log_source].extend(payload.records) if not record_alerts: continue # Extend the list of alerts with any new ones so they can be returned self._alerts.extend(record_alerts) if self.enable_alert_processor: self.sinker.sink(record_alerts) return payload_with_normalized_records
class StreamAlert(object): """Wrapper class for handling all StreamAlert classificaiton and processing""" def __init__(self, context, return_alerts=False): """ Args: context: An AWS context object which provides metadata on the currently executing lambda function. return_alerts: If the user wants to handle the sinking of alerts to external endpoints, return a list of generated alerts. """ self.return_alerts = return_alerts self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the alert processor self.sinker = StreamSink(self.env) self.alerts = [] def run(self, event): """StreamAlert Lambda function handler. Loads the configuration for the StreamAlert function which contains: available data sources, log formats, parser modes, and sinks. Classifies logs sent into the stream into a parsed type. Matches records against rules. Args: event: An AWS event mapped to a specific source/entity (kinesis stream or an s3 bucket event) containing data emitted to the stream. Returns: None """ LOGGER.debug('Number of Records: %d', len(event.get('Records', []))) config = load_config() for record in event.get('Records', []): payload = StreamPayload(raw_record=record) classifier = StreamClassifier(config=config) # If the kinesis stream, s3 bucket, or sns topic is not in our config, # go onto the next record if not classifier.map_source(payload): continue if payload.service == 's3': self._s3_process(payload, classifier) elif payload.service == 'kinesis': self._kinesis_process(payload, classifier) elif payload.service == 'sns': self._sns_process(payload, classifier) else: LOGGER.info('Unsupported service: %s', payload.service) LOGGER.debug('%s alerts triggered', len(self.alerts)) LOGGER.debug('\n%s\n', json.dumps(self.alerts, indent=4)) if self.return_alerts: return self.alerts def _kinesis_process(self, payload, classifier): """Process Kinesis data for alerts""" data = StreamPreParsers.pre_parse_kinesis(payload.raw_record) self._process_alerts(classifier, payload, data) def _s3_process(self, payload, classifier): """Process S3 data for alerts""" s3_file, s3_object_size = StreamPreParsers.pre_parse_s3( payload.raw_record) count, processed_size = 0, 0 for data in StreamPreParsers.read_s3_file(s3_file): payload.refresh_record(data) self._process_alerts(classifier, payload, data) # Add the current data to the total processed size, +1 to account for line feed processed_size += (len(data) + 1) count += 1 # Log an info message on every 100 lines processed if count % 100 == 0: avg_record_size = ((processed_size - 1) / count) approx_record_count = s3_object_size / avg_record_size LOGGER.info( 'Processed %s records out of an approximate total of %s ' '(average record size: %s bytes, total size: %s bytes)', count, approx_record_count, avg_record_size, s3_object_size) def _sns_process(self, payload, classifier): """Process SNS data for alerts""" data = StreamPreParsers.pre_parse_sns(payload.raw_record) self._process_alerts(classifier, payload, data) def _process_alerts(self, classifier, payload, data): """Process records for alerts and send them to the correct places Args: classifier [StreamClassifier]: Handler for classifying a record's data payload [StreamPayload]: StreamAlert payload object being processed data [string]: Pre parsed data string from a raw_event to be parsed """ classifier.classify_record(payload, data) if not payload.valid: LOGGER.error('Invalid data: %s\n%s', payload, json.dumps(payload.raw_record, indent=4)) return alerts = StreamRules.process(payload) if not alerts: LOGGER.debug('Valid data, no alerts') return # If we want alerts returned to the caller, extend the list. Otherwise # attempt to send them to the alert processor if self.return_alerts: self.alerts.extend(alerts) else: self.sinker.sink(alerts)
class StreamAlert(object): """Wrapper class for handling all StreamAlert classificaiton and processing""" def __init__(self, context, enable_alert_processor=True): """ Args: context: An AWS context object which provides metadata on the currently executing lambda function. enable_alert_processor (bool): If the user wants to send the alerts using their own methods, 'enable_alert_processor' can be set to False to suppress sending with the StreamAlert alert processor. """ # Load the config. Validation occurs during load, which will # raise exceptions on any ConfigErrors config = load_config() # Load the environment from the context arn self.env = load_env(context) # Instantiate the sink here to handle sending the triggered alerts to the # alert processor self.sinker = StreamSink(self.env) # Instantiate a classifier that is used for this run self.classifier = StreamClassifier(config=config) self.enable_alert_processor = enable_alert_processor self._failed_record_count = 0 self._alerts = [] def run(self, event): """StreamAlert Lambda function handler. Loads the configuration for the StreamAlert function which contains: available data sources, log formats, parser modes, and sinks. Classifies logs sent into the stream into a parsed type. Matches records against rules. Args: event: An AWS event mapped to a specific source/entity (kinesis stream or an s3 bucket event) containing data emitted to the stream. Returns: bool: True if all logs being parsed match a schema """ records = event.get('Records', []) LOGGER.debug('Number of Records: %d', len(records)) if not records: return False MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TOTAL_RECORDS, len(records)) for raw_record in records: # Get the service and entity from the payload. If the service/entity # is not in our config, log and error and go onto the next record service, entity = self.classifier.extract_service_and_entity( raw_record) if not service: LOGGER.error( 'No valid service found in payload\'s raw record. Skipping ' 'record: %s', raw_record) continue if not entity: LOGGER.error( 'Unable to extract entity from payload\'s raw record for service %s. ' 'Skipping record: %s', service, raw_record) continue # Cache the log sources for this service and entity on the classifier if not self.classifier.load_sources(service, entity): continue # Create the StreamPayload to use for encapsulating parsed info payload = load_stream_payload(service, entity, raw_record) if not payload: continue self._process_alerts(payload) LOGGER.debug('Invalid record count: %d', self._failed_record_count) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.FAILED_PARSES, self._failed_record_count) LOGGER.debug('%s alerts triggered', len(self._alerts)) MetricLogger.log_metric(FUNCTION_NAME, MetricLogger.TRIGGERED_ALERTS, len(self._alerts)) # Check if debugging logging is on before json dumping alerts since # this can be time consuming if there are a lot of alerts if self._alerts and LOGGER.isEnabledFor(LOG_LEVEL_DEBUG): LOGGER.debug('Alerts:\n%s', json.dumps(self._alerts, indent=2)) return self._failed_record_count == 0 def get_alerts(self): """Public method to return alerts from class. Useful for testing. Returns: list: list of alerts as dictionaries """ return self._alerts def _process_alerts(self, payload): """Process records for alerts and send them to the correct places Args: payload (StreamPayload): StreamAlert payload object being processed """ for record in payload.pre_parse(): self.classifier.classify_record(record) if not record.valid: if self.env['lambda_alias'] != 'development': LOGGER.error( 'Record does not match any defined schemas: %s\n%s', record, record.pre_parsed_record) self._failed_record_count += 1 continue LOGGER.debug( 'Classified and Parsed Payload: <Valid: %s, Log Source: %s, Entity: %s>', record.valid, record.log_source, record.entity) record_alerts = StreamRules.process(record) LOGGER.debug( 'Processed %d valid record(s) that resulted in %d alert(s).', len(payload.records), len(record_alerts)) if not record_alerts: continue # Extend the list of alerts with any new ones so they can be returned self._alerts.extend(record_alerts) if self.enable_alert_processor: self.sinker.sink(record_alerts)