示例#1
0
def shearDyn(width, ratio, edge, save=False, force_dir_update=True):

    atoms, L, W, length_int, b_idxs = create_stucture(ratio,
                                                      width,
                                                      edge,
                                                      key='rib+base')

    view(atoms)
    # FIXES
    constraints, add_LJ, rend_b, rend_t = get_constraints(
        atoms, edge, bond, b_idxs)
    # END FIXES

    # CALCULATOR LAMMPS
    calc = LAMMPS(parameters=get_lammps_params())
    atoms.set_calculator(calc)
    # END CALCULATOR

    # TRAJECTORY
    add = ''
    if force_dir_update: add = '_ff'
    mdfile, mdlogfile, mdrelax, simulfile   =   get_fileName('LJ', edge + add, width, \
                                                 length_int, int(T), taito)

    if save: traj = PickleTrajectory(mdfile, 'w', atoms)
    else: traj = None

    #data    =   np.zeros((M/interval, 5))

    # RELAX
    atoms.set_constraint(add_LJ)
    dyn = BFGS(atoms, trajectory=mdrelax)
    dyn.run(fmax=0.05)

    # FIX AFTER RELAXATION
    atoms.set_constraint(constraints)

    # DYNAMICS
    dyn = Langevin(atoms, dt * units.fs, T * units.kB, fric)
    n = 0
    header = '#t [fs], shift y [Angstrom], Rad, epot_tot [eV], ekin_tot [eV], etot_tot [eV] \n'
    write_line_own(mdlogfile, header, 'w')

    if T != 0:
        # put initial MaxwellBoltzmann velocity distribution
        mbd(atoms, T * units.kB)

    deltaY = 0.
    eta = 1.1  # ratio between the lengths of the streched and compressed side of the ribbon.
    r = L / W  # length to width ratio.
    deltaYMax = W / 2. * (eta + 1) / (eta - 1) * (1 - np.cos(2 * r *
                                                             (eta - 1) /
                                                             (eta + 1)))

    # Estimate for the required shift
    dy = v * dt
    M = deltaYMax / dy
    interval = int(M / 1000)

    kink_formed = False
    dir_vec = np.array([0., 1., 0.])
    i, m = 0, 0
    print 'width = %i, length = %i' % (width, length_int)
    while m <= int(M / 30):

        if tau < i * dt:
            deltaY += dy * dir_vec[1]
            for ind in rend_b:
                atoms[ind].position[:] += dy * dir_vec

        dyn.run(1)

        if i % interval == 0:

            epot, ekin = saveAndPrint(atoms, traj, False)[:2]

            R = get_R(L, deltaY)
            if force_dir_update: dir_vec = get_dir(atoms, rend_b, rend_t)
            data = [i * dt, deltaY, R, epot, ekin, epot + ekin]

            if save:
                stringi = ''
                for k, d in enumerate(data):
                    if k == 0:
                        stringi += '%.2f ' % d
                    elif k == 1 or k == 2:
                        stringi += '%.4f ' % d
                    else:
                        stringi += '%.12f ' % d
                write_line_own(mdlogfile, stringi + '\n', 'a')

            n += 1

            if thres_Z < np.max(atoms.positions[:, 2]) and m == 0:
                idxs = np.where(thres_Z < atoms.positions[:, 2])
                write_line_own(mdlogfile,
                               '# Kink! at idxs %s' % str(idxs) + '\n', 'a')
                print ' kink formed! '
                kink_formed = True

        if save and T != 0 and i * dt == tau:
            write_line_own(mdlogfile, '# Thermalization complete. ' + '\n',
                           'a')

        if i % int(M / 100) == 0: print str(i / int(M / 100)) + ' ~ % done'
        if kink_formed: m += 1
        i += 1


    make_simul_param_file(simulfile, W, L, width, length_int, v, dy, T, \
                          dt, fric, thres_Z, interval, deltaY, M, edge)
示例#2
0
def corr_KC(width, edge):
    #width   =   5
    #edge    =   'ac'
    params0 = get_simulParams(edge)[-1]
    bond = params0['bond']

    atoms = create_stucture(1, width, edge, key='top', a=bond)[0]

    atoms.set_cell([40, 40, 20])
    atoms.center()
    atoms.positions[:, 2] = 3.4

    h_t = []
    for i in range(len(atoms)):
        if atoms[i].number == 1:
            h_t.append(i)

    del atoms[h_t]

    params = {}
    params['positions'] = atoms.positions
    params['chemical_symbols'] = atoms.get_chemical_symbols()
    params['ia_dist'] = 10
    params['edge'] = edge
    params['bond'] = bond
    params['ncores'] = 2
    add_KC = KC_potential_p(params)

    constraints = []
    for i in range(len(atoms)):
        fix_l = FixedLine(i, [0., 0., 1.])
        constraints.append(fix_l)

    constraints.append(add_KC)

    lamp_parameters = get_lammps_params(H=False)
    calc = LAMMPS(parameters=lamp_parameters)  #, files=['lammps.data'])
    atoms.set_calculator(calc)
    atoms.set_constraint(constraints)

    #dyn     =   BFGS(atoms, trajectory = 'test.traj')
    #dyn.run(fmax=0.05)

    trans_vec = trans_atomsKC(atoms.positions[0], edge, bond)
    atoms.translate(trans_vec)

    init_pos = atoms.positions.copy()
    middle = [
        np.average(init_pos[:, 0]),
        np.average(init_pos[:, 1]),
        np.average(init_pos[:, 2])
    ]

    thetas = np.linspace(np.pi / 2, np.pi, 91)
    L = 4 * bond
    ds = .05
    n = int(L / ds)

    for i, theta in enumerate(thetas):
        fname = path + 'corr_w=%02d_%s_theta=%.2f.data' % (width, edge, theta /
                                                           (2 * np.pi) * 360)
        if not os.path.isfile(fname):
            print 'Calculating w=%i, theta = %.2f' % (width, theta /
                                                      (2 * np.pi) * 360)

            atoms.positions = init_pos
            atoms.rotate([0, 0, 1], theta, center=middle)
            trans_vec = np.array([-np.sin(theta), np.cos(theta), 0])
            data = np.zeros((n, 3))

            for j in range(n):
                atoms.translate(ds * trans_vec)
                emin, hmin = get_optimal_h(atoms, len(atoms), dyn=False)
                data[j, :] = [j * ds, emin, hmin]
                #plot_posits(atoms, edge, bond)

            header = '%s runs along x-dir, angle measured from x-axis, natoms = %i. x (Angs), e (eV/atom), hmin' % (
                edge, len(atoms))
            np.savetxt(fname, data, header=header)
示例#3
0
def shearDyn(params_set, pot_key, save=False):

    bond = params_set['bond']
    T = params_set['T']
    taito = params_set['taito']
    dt, fric = params_set['dt'], params_set['fric']
    tau = params_set['tau']
    vmax = params_set['vmax']
    vMAX = params_set['vMAX']
    thres_Z = params_set['thresZ']
    width = params_set['width']
    ratio = params_set['ratio']
    edge = params_set['edge']



    atoms, L, W, length_int, b_idxs     =   \
            create_stucture(ratio, width, edge, key = 'top', a = bond)

    mdfile, mdlogfile, mdrelax, simulfile, folder, relaxed \
                        =   get_fileName(pot_key, edge + '_twistRod', width, \
                                        length_int, vmax * 1000, int(T), taito)

    #view(atoms)
    # FIXES
    constraints, add_pot, twist, rend_b, rend_t =   \
            get_constraints(atoms, edge, bond, b_idxs, \
                            key = 'twist_p', pot = pot_key)
    # END FIXES

    if relaxed:
        atoms = PickleTrajectory(mdrelax, 'r')[-1]
    else:
        trans = trans_atomsKC(atoms.positions[rend_b], edge, bond)
        atoms.translate(trans)

    #plot_posits(atoms, edge, bond)

    # CALCULATOR LAMMPS
    calc = LAMMPS(parameters=get_lammps_params())
    atoms.set_calculator(calc)
    # END CALCULATOR

    # TRAJECTORY
    if save: traj = PickleTrajectory(mdfile, 'w', atoms)
    else: traj = None

    #data    =   np.zeros((M/interval, 5))

    # RELAX
    atoms.set_constraint(add_pot)
    dyn = BFGS(atoms, trajectory=mdrelax)
    dyn.run(fmax=0.05)

    dist = np.linalg.norm(atoms.positions[rend_b] - atoms.positions[rend_t])
    twist.set_dist(dist)
    # FIX AFTER RELAXATION
    atoms.set_constraint(constraints)

    # DYNAMICS
    dyn = Langevin(atoms, dt * units.fs, T * units.kB, fric)
    header = '#t [fs], shift y [Angstrom], Rad, theta [rad], hmax [A], epot_tot [eV], ekin_tot [eV], etot_tot [eV], F [eV/angst] \n'
    write_line_own(mdlogfile, header, 'w')

    if T != 0:
        # put initial MaxwellBoltzmann velocity distribution
        mbd(atoms, T * units.kB)

    y0 = atoms.positions[rend_b, 1]

    kink_formed = False
    kink_vanished = False
    i = 0
    print 'width = %i, length = %i, v=%.6f' % (width, length_int, vmax)

    M_therm = int(tau / dt)
    dyn.run(M_therm)

    M = int(2 * L / (np.pi * dt * vmax))
    M_min = int(2 * L / (np.pi * dt * vMAX))
    dtheta = np.pi / 2 / M
    dtheta_max = np.pi / 2 / M_min

    interval = int(M / 1000)
    theta, time, m = 0., 0., 0
    i_kink = 0

    while 0. <= theta:

        if not kink_formed:
            if theta < np.pi / 4:
                theta += dtheta_max
            else:
                theta += dtheta
            twist.set_angle(theta)
        else:
            if i_kink / 10 < m:
                theta -= dtheta
                twist.set_angle(theta)

        dyn.run(1)

        if i % interval == 0:
            epot, ekin = saveAndPrint(atoms, traj, False)[:2]
            deltaY = atoms.positions[rend_b, 1] - y0

            hmax = np.max(
                atoms.positions[:, 2])  #substract the height of the plane?
            R = get_R(L, deltaY)
            data = [time, deltaY, R, theta, hmax, epot, ekin, epot + ekin]

            if save:
                stringi = ''
                for k, d in enumerate(data):
                    if k == 0:
                        stringi += '%.2f ' % d
                    elif k == 1 or k == 2:
                        stringi += '%.4f ' % d
                    else:
                        stringi += '%.12f ' % d
                write_line_own(mdlogfile, stringi + '\n', 'a')

            if thres_Z < hmax and not kink_formed:
                idxs = np.where(thres_Z < atoms.positions[:, 2])
                write_line_own(mdlogfile,
                               '# Kink! at idxs %s' % str(idxs) + '\n', 'a')
                print ' kink formed! ' + str(i / interval)
                kink_formed = True
                i_kink = i

            if hmax < 3.6 and kink_formed and not kink_vanished:
                write_line_own(mdlogfile, '# Kink vanished! \n', 'a')
                print ' kink vanished '
                kink_vanished = True

            print i / interval, theta / (2 * np.pi) * 360, R

        if kink_formed: m += 1

        i += 1
        time += dt


    make_simul_param_file(simulfile, W, L, width, length_int, dtheta/dt, dtheta, T, \
                          dt, fric, thres_Z, interval, deltaY, theta, i, edge)

    return folder
示例#4
0
def shearDyn(params_set, pot_key, save = False):
    
    bond    =   params_set['bond']
    T       =   params_set['T']
    taito   =   params_set['taito']
    dt, fric=   params_set['dt'], params_set['fric']
    tau     =   params_set['tau']
    vmax    =   params_set['vmax']
    vMAX    =   params_set['vMAX']
    thres_Z =   params_set['thresZ']
    width   =   params_set['width']
    ratio   =   params_set['ratio']
    edge    =   params_set['edge']
    
    
    
    atoms, L, W, length_int, b_idxs     =   \
            create_stucture(ratio, width, edge, key = 'top', a = bond)
    
    mdfile, mdlogfile, mdrelax, simulfile, folder, relaxed \
                        =   get_fileName(pot_key, edge + '_twistRod', width, \
                                        length_int, vmax * 1000, int(T), taito)
    
    
    #view(atoms)
    # FIXES
    constraints, add_pot, twist, rend_b, rend_t =   \
            get_constraints(atoms, edge, bond, b_idxs, \
                            key = 'twist_p', pot = pot_key)
    # END FIXES

    if relaxed:
        atoms   =   PickleTrajectory(mdrelax, 'r')[-1]
    else:
        trans   =   trans_atomsKC(atoms.positions[rend_b], edge, bond)
        atoms.translate(trans) 
    
    #plot_posits(atoms, edge, bond)
    
    # CALCULATOR LAMMPS 
    calc    =   LAMMPS(parameters=get_lammps_params()) 
    atoms.set_calculator(calc)
    # END CALCULATOR
    
    # TRAJECTORY
    if save:    traj    =   PickleTrajectory(mdfile, 'w', atoms)
    else:       traj    =   None
    
    #data    =   np.zeros((M/interval, 5))
    
    # RELAX
    atoms.set_constraint(add_pot)
    dyn     =   BFGS(atoms, trajectory = mdrelax)
    dyn.run(fmax=0.05)

    dist    =   np.linalg.norm(atoms.positions[rend_b] - atoms.positions[rend_t])
    twist.set_dist(dist)
    # FIX AFTER RELAXATION
    atoms.set_constraint(constraints)
    
    # DYNAMICS
    dyn     =   Langevin(atoms, dt*units.fs, T*units.kB, fric)
    header  =   '#t [fs], shift y [Angstrom], Rad, theta [rad], hmax [A], epot_tot [eV], ekin_tot [eV], etot_tot [eV], F [eV/angst] \n'
    write_line_own(mdlogfile, header, 'w')

    if T != 0:
        # put initial MaxwellBoltzmann velocity distribution
        mbd(atoms, T*units.kB)
    
    y0          =   atoms.positions[rend_b, 1]
    
    kink_formed =   False
    kink_vanished   =   False
    i           =   0
    print 'width = %i, length = %i, v=%.6f' %(width, length_int, vmax)
    
    
    M_therm     =   int(tau / dt)
    dyn.run(M_therm)
    
    M               =   int(2 * L / (np.pi * dt * vmax))
    M_min           =   int(2 * L / (np.pi * dt * vMAX))
    dtheta          =   np.pi / 2 / M
    dtheta_max      =   np.pi / 2 / M_min
    
    interval        =   int( M / 1000 ) 
    theta, time, m  =   0., 0., 0
    i_kink          =   0
    
    
    while 0. <= theta:
        
        if not kink_formed:
            if theta < np.pi/4:
                theta      +=   dtheta_max
            else:
                theta      +=   dtheta
            twist.set_angle(theta)
        else:
            if i_kink / 10 < m: 
                theta      -=   dtheta
                twist.set_angle(theta)
            
        dyn.run(1)
        
        if i % interval == 0:
            epot, ekin  =   saveAndPrint(atoms, traj, False)[:2]
            deltaY      =   atoms.positions[rend_b, 1] - y0
            
            hmax        =   np.max(atoms.positions[:,2]) #substract the height of the plane?
            R           =   get_R(L, deltaY)
            data        =   [time, deltaY, R, theta, hmax, epot, ekin, epot + ekin]
            
            if save:
                stringi =   ''
                for k,d in enumerate(data):
                    if k == 0:           
                        stringi += '%.2f ' %d
                    elif k == 1 or k == 2:
                        stringi += '%.4f ' %d
                    else:
                        stringi += '%.12f ' %d
                write_line_own(mdlogfile, stringi +  '\n', 'a')
        
            if thres_Z  <   hmax and not kink_formed:
                idxs    =   np.where(thres_Z < atoms.positions[:,2])
                write_line_own(mdlogfile, '# Kink! at idxs %s' %str(idxs) +  '\n', 'a')
                print ' kink formed! ' + str(i / interval)
                kink_formed     =   True
                i_kink  =   i
                
            if hmax < 3.6 and kink_formed and not kink_vanished:
                write_line_own(mdlogfile, '# Kink vanished! \n', 'a')
                print ' kink vanished '
                kink_vanished   =   True


            print i/interval, theta / (2*np.pi) * 360, R
        
        if kink_formed: m += 1
        
        i      +=   1
        time   +=   dt     

    
    make_simul_param_file(simulfile, W, L, width, length_int, dtheta/dt, dtheta, T, \
                          dt, fric, thres_Z, interval, deltaY, theta, i, edge)
    
    return folder
示例#5
0
def shearDyn(width, ratio, edge, save=False):

    atoms, L, W, length_int, b_idxs = create_stucture(ratio,
                                                      width,
                                                      edge,
                                                      key='top')

    view(atoms)
    # FIXES
    constraints, add_LJ, twist, rend_b, rend_t = get_constraints(atoms,
                                                                 edge,
                                                                 bond,
                                                                 b_idxs,
                                                                 key='twist')
    # END FIXES

    # CALCULATOR LAMMPS
    calc = LAMMPS(parameters=get_lammps_params())
    atoms.set_calculator(calc)
    # END CALCULATOR

    # TRAJECTORY
    mdfile, mdlogfile, mdrelax, simulfile   =   get_fileName('LJ', edge + '_twist', width, \
                                                 length_int, int(T), taito)

    if save: traj = PickleTrajectory(mdfile, 'w', atoms)
    else: traj = None

    #data    =   np.zeros((M/interval, 5))

    # RELAX
    atoms.set_constraint(add_LJ)
    dyn = BFGS(atoms, trajectory=mdrelax)
    dyn.run(fmax=0.05)

    # FIX AFTER RELAXATION
    atoms.set_constraint(constraints)

    # DYNAMICS
    dyn = Langevin(atoms, dt * units.fs, T * units.kB, fric)
    header = '#t [fs], shift y [Angstrom], Rad, epot_tot [eV], \
                ekin_tot [eV], etot_tot [eV], F [eV/angst] \n'

    write_line_own(mdlogfile, header, 'w')

    if T != 0:
        # put initial MaxwellBoltzmann velocity distribution
        mbd(atoms, T * units.kB)

    y0 = atoms.positions[rend_b, 1][0]

    kink_formed = False
    dir_vec = np.array([0., 1., 0.])
    i, m = 0, 0
    interval = 20
    print 'width = %i, length = %i' % (width, length_int)

    M_therm = int(tau / dt)

    dyn.run(M_therm)
    F = 0.

    while not kink_formed:

        pos_0 = atoms.positions[rend_b][0]
        F_vec = F * np.array([dir_vec[1], -dir_vec[0], 0.])
        twist.set_F(F_vec)
        dyn.run(interval)

        i += interval
        epot, ekin = saveAndPrint(atoms, traj, False)[:2]
        pos_1 = atoms.positions[rend_b][0]
        deltaY = pos_1[1] - y0

        v = np.sign(pos_1[1] - pos_0[1]) * np.linalg.norm(
            (pos_1 - pos_0) / (interval * dt))
        R = get_R(L, deltaY)
        dir_vec = get_dir(atoms, rend_b, rend_t)
        data = [
            i * dt, deltaY, R, epot, ekin, epot + ekin, F_vec[0], F_vec[1],
            F_vec[2]
        ]

        #if      vmax/5 < v:   F   -=  .01
        if v < vmax / 5 and not kink_formed: F += .01

        print deltaY, v, F

        if save:
            stringi = ''
            for k, d in enumerate(data):
                if k == 0:
                    stringi += '%.2f ' % d
                elif k == 1 or k == 2:
                    stringi += '%.4f ' % d
                else:
                    stringi += '%.12f ' % d
            write_line_own(mdlogfile, stringi + '\n', 'a')

        if thres_Z < np.max(atoms.positions[:, 2]) and m == 0:
            idxs = np.where(thres_Z < atoms.positions[:, 2])
            write_line_own(mdlogfile, '# Kink! at idxs %s' % str(idxs) + '\n',
                           'a')
            print ' kink formed! '
            kink_formed = True
            F = 0

        if save and T != 0 and i * dt == tau:
            write_line_own(mdlogfile, '# Thermalization complete. ' + '\n',
                           'a')

        if i % 100 == 0: print i
        if kink_formed: m += 1


    make_simul_param_file(simulfile, W, L, width, length_int, v, deltaY/i, T, \
                          dt, fric, thres_Z, interval, deltaY, i, edge)
示例#6
0
def shearDyn(width, edge, save = False):
    
    ratio   =   8
    atoms   =   create_stucture(ratio, width, edge, key = 'top')
    
    
    # FIXES
    constraints     =   []
    top, bot        =   get_topInds(atoms)
    rend            =   get_rightInds(atoms, top)
    fix_bot         =   FixAtoms(indices = bot)
    
    view(atoms)
    constraints.append(fix_bot)
    for i in rend:
        constraints.append(FixedLine(i, (1,0,0)))
    
    # KC
    params          =   get_params(atoms)
    params['top_inds']  \
                    =   top
    add_kc          =   KC_potential_p(params)
    constraints.append(add_kc)
    # END FIXES
    
    
    
    # CALCULATOR LAMMPS 
    parameters = {'pair_style':'rebo',
                  'pair_coeff':['* * CH.airebo C H'],
                  'mass'      :['1 12.0', '2 1.0'],
                  'units'     :'metal', 
                  'boundary'  :'p p f'}
    
    calc    =   LAMMPS(parameters=parameters) 
    atoms.set_calculator(calc)
    # END CALCULATOR
    
    
    # TRAJECTORY
    mdfile, mdlogfile, mdrelax  =   get_fileName(edge, width, ratio, v, taito = False)
    
    if save:    traj    =   PickleTrajectory(mdfile, 'w', atoms)
    else:       traj    =   None
    
    #data    =   np.zeros((M/interval, 5))
    
    # RELAX
    atoms.set_constraint(add_kc)
    dyn     =   BFGS(atoms, trajectory = mdrelax)
    dyn.run(fmax=0.05)
    
    # FIX AFTER RELAXATION
    atoms.set_constraint(constraints)
    
    # DYNAMICS
    dyn     =   Langevin(atoms, dt*units.fs, T*units.kB, fric)
    n       =   0
    header  =   '#t [fs], d [Angstrom], epot_tot [eV], ekin_tot [eV], etot_tot [eV] \n'
    log_f   =   open(mdlogfile, 'w')
    log_f.write(header)            
    log_f.close()

    if T != 0:
        # put initial MaxwellBoltzmann velocity distribution
        mbd(atoms, T*units.kB)
    
    
    for i in range(0, M):
        
        if tau < i*dt:
            hw   =   i*dy
            for ind in rend:
                atoms[ind].position[1] += dy 
        
        dyn.run(1)
        
        if i%interval == 0:

            epot, ekin  =   saveAndPrint(atoms, traj, False)[:2]
            
            if T != 0:
                if tau < i*dt:  hw   =   i*dy - tau*v
                else: hw =   0
            else:   hw = i*dy
                
            data        =   [i*dt, hw, epot, ekin, epot + ekin]
            
            if save:
                log_f   =   open(mdlogfile, 'a')
                stringi =   ''
                for k,d in enumerate(data):
                    if k == 0:           
                        stringi += '%.2f ' %d
                    elif k == 1:
                        stringi += '%.6f ' %d
                    else:
                        stringi += '%.12f ' %d
                
                log_f.write(stringi +  '\n')
                log_f.close()
                  

            n += 1
        
        
        if save and T != 0 and i*dt == tau:
            log_f   =   open(mdlogfile, 'a')
            log_f.write('# Thermalization complete. ' +  '\n')
            log_f.close()
            
            
        if 1e2 <= M:    
            if i%(int(M/100)) == 0: print 'ready = %.1f' %(i/(int(M/100))) + '%' 
示例#7
0
def corr_KC(width, edge):

    params0 = get_simulParams(edge)[-1]
    bond = params0['bond']
    '''
    atoms   =   graphene_nanoribbon(1, 1, type= 'armchair', C_C=bond, saturated = False)
    atoms.rotate([1,0,0], np.pi/2, rotate_cell = True)
    atoms.rotate([0,0,1], -np.pi/2, rotate_cell = True)
    atoms.set_cell([20, 20, 10])
    atoms.center()
    del atoms[[2,3]]
    '''
    atoms = create_stucture(2, width, edge, key='top', a=bond)[0]

    atoms.set_cell([70, 70, 20])
    atoms.center()
    atoms.positions[:, 2] = 3.4

    h_t = []
    for i in range(len(atoms)):
        if atoms[i].number == 1:
            h_t.append(i)

    del atoms[h_t]

    #view(atoms)
    params = {}
    params['positions'] = atoms.positions
    params['chemical_symbols'] = atoms.get_chemical_symbols()
    params['ia_dist'] = 10
    params['edge'] = edge
    params['bond'] = bond
    params['ncores'] = 2
    params['no_edge_neigh'] = True
    add_KC = KC_potential_p(params)

    constraints = []
    for i in range(len(atoms)):
        fix_l = FixedLine(i, [0., 0., 1.])
        constraints.append(fix_l)

    constraints.append(add_KC)

    lamp_parameters = get_lammps_params(H=False)
    calc = LAMMPS(parameters=lamp_parameters)  #, files=['lammps.data'])
    atoms.set_calculator(calc)
    atoms.set_constraint(constraints)

    #dyn     =   BFGS(atoms, trajectory = 'test.traj')
    #dyn.run(fmax=0.05)

    #plot_posits(atoms, edge, bond)

    trans_vec = trans_atomsKC(atoms.positions[0], edge, bond)
    atoms.translate(trans_vec)

    #plot_posits(atoms, edge, bond)
    #exit()
    init_pos = atoms.positions.copy()
    r_around = init_pos[1]

    thetas = np.linspace(0, np.pi / 3, 61)
    n = 15

    lat_vec1 = np.array([3. / 2 * bond, np.sqrt(3) / 2 * bond, 0.])
    lat_vec2 = np.array([3. / 2 * bond, -np.sqrt(3) / 2 * bond, 0.])

    for i, theta in enumerate(thetas):
        fname = path + 'corr_%s_theta=%.2f.data' % (edge, theta /
                                                    (2 * np.pi) * 360)
        #if not os.path.isfile(fname):
        print 'Calculating theta = %.2f' % (theta / (2 * np.pi) * 360)
        atoms.positions = init_pos
        atoms.rotate([0, 0, 1], theta, center=r_around)

        R = np.array([[np.cos(theta), -np.sin(theta), 0.],
                      [np.sin(theta), np.cos(theta), 0.], [0., 0., 1.]])

        lat_vec_theta1 = np.dot(R, lat_vec1.copy())
        lat_vec_theta2 = np.dot(R, lat_vec2.copy())

        #trans_vec1      =   lat_vec_theta1.copy()/n
        trans_vec2 = lat_vec_theta2.copy() / n

        data = np.zeros((n, n))
        #plot_posits(atoms, edge, bond, vecs =  [lat_vec_theta1, lat_vec_theta2])

        for k in range(n):
            atoms.positions = init_pos
            atoms.translate(lat_vec_theta1 * float(k) / n)
            #plot_posits(atoms, edge, bond, vecs =  [lat_vec_theta1, lat_vec_theta2])
            #print trans_vec1*float(k)/n, k, n, float(k)/n

            for l in range(n):
                atoms.translate(trans_vec2)
                emin, hmin = get_optimal_h(atoms, len(atoms), dyn=False)
                #data[k,l,:]  =   [emin, hmin]
                data[k, l] = emin  #atoms.get_potential_energy()/len(atoms)

        header  =   '%s runs along x-dir, angle measured from x-axis, natoms = %i. x (Angs), e (eV/atom), hmin \n\
the lattice vectors are l1 = [%.5f, %.5f, %.5f] and l2 = [%.5f, %.5f, %.5f], they are divided in %i parts. data[i,j,:] \n\
-> atoms pos += l1/n*i + l2/n*j, initial position is such that atom1 is in middle if hexagon.' \
    %(edge, len(atoms), lat_vec_theta1[0], lat_vec_theta1[1], lat_vec_theta1[2], \
      lat_vec_theta2[0], lat_vec_theta2[1], lat_vec_theta2[2], n)
        np.savetxt(fname, data, header=header)
def corr_KC(width, edge):
    #width   =   5
    #edge    =   'ac'
    params0 =   get_simulParams(edge)[-1]
    bond    =   params0['bond']
    
    
    atoms   =   create_stucture(1, width, edge, key = 'top', a = bond)[0]
    
    atoms.set_cell([40, 40, 20])
    atoms.center()
    atoms.positions[:,2]    =   3.4
     
    h_t =   []
    for i in range(len(atoms)):
        if atoms[i].number == 1:
            h_t.append(i)
    
    del atoms[h_t]
    
    
    params  =   {}
    params['positions']         =   atoms.positions
    params['chemical_symbols']  =   atoms.get_chemical_symbols()   
    params['ia_dist']           =   10
    params['edge']              =   edge
    params['bond']              =   bond    
    params['ncores']            =   2
    add_KC                      =   KC_potential_p(params)
    
    
    constraints =   []
    for i in range(len(atoms)):
        fix_l   =   FixedLine(i, [0., 0., 1.])
        constraints.append(fix_l)
    
    constraints.append(add_KC)
    
    lamp_parameters =   get_lammps_params(H=False)
    calc            =   LAMMPS(parameters = lamp_parameters) #, files=['lammps.data'])
    atoms.set_calculator(calc)
    atoms.set_constraint(constraints)
    
    #dyn     =   BFGS(atoms, trajectory = 'test.traj')
    #dyn.run(fmax=0.05)
    
    trans_vec   =   trans_atomsKC(atoms.positions[0], edge, bond)
    atoms.translate(trans_vec)
    
    init_pos    =   atoms.positions.copy()
    middle      =   [np.average(init_pos[:,0]), 
                     np.average(init_pos[:,1]), 
                     np.average(init_pos[:,2])]
     
    
    thetas      =   np.linspace(np.pi/2, np.pi, 91)
    L           =   4*bond
    ds          =   .05
    n           =   int(L/ds)
    
    for i, theta in enumerate(thetas):
        fname   =   path + 'corr_w=%02d_%s_theta=%.2f.data' %(width, edge, theta/(2*np.pi)*360)
        if not os.path.isfile(fname): 
            print 'Calculating w=%i, theta = %.2f' %(width, theta/(2*np.pi)*360)
            
            atoms.positions =   init_pos
            atoms.rotate([0,0,1], theta, center = middle)
            trans_vec       =   np.array([-np.sin(theta), np.cos(theta), 0])
            data            =   np.zeros((n, 3))
            
            for j in range(n):
                atoms.translate(ds*trans_vec)
                emin, hmin  =   get_optimal_h(atoms, len(atoms), dyn = False)
                data[j, :]  =   [j*ds, emin, hmin]   
                #plot_posits(atoms, edge, bond)
            
            header  =   '%s runs along x-dir, angle measured from x-axis, natoms = %i. x (Angs), e (eV/atom), hmin' %(edge, len(atoms))
            np.savetxt(fname, data, header = header)
def corr_KC(width, edge):
    
    params0 =   get_simulParams(edge)[-1]
    bond    =   params0['bond']
    
    '''
    atoms   =   graphene_nanoribbon(1, 1, type= 'armchair', C_C=bond, saturated = False)
    atoms.rotate([1,0,0], np.pi/2, rotate_cell = True)
    atoms.rotate([0,0,1], -np.pi/2, rotate_cell = True)
    atoms.set_cell([20, 20, 10])
    atoms.center()
    del atoms[[2,3]]
    '''
    atoms   =   create_stucture(2, width, edge, key = 'top', a = bond)[0]
    
    atoms.set_cell([70, 70, 20])
    atoms.center()
    atoms.positions[:,2]    =   3.4
     
    h_t =   []
    for i in range(len(atoms)):
        if atoms[i].number == 1:
            h_t.append(i)
    
    del atoms[h_t]
    
    #view(atoms)
    params  =   {}
    params['positions']         =   atoms.positions
    params['chemical_symbols']  =   atoms.get_chemical_symbols()   
    params['ia_dist']           =   10
    params['edge']              =   edge
    params['bond']              =   bond    
    params['ncores']            =   2
    params['no_edge_neigh']     =   True
    add_KC                      =   KC_potential_p(params)
    
    
    constraints =   []
    for i in range(len(atoms)):
        fix_l   =   FixedLine(i, [0., 0., 1.])
        constraints.append(fix_l)
    
    constraints.append(add_KC)
    
    lamp_parameters =   get_lammps_params(H=False)
    calc            =   LAMMPS(parameters = lamp_parameters) #, files=['lammps.data'])
    atoms.set_calculator(calc)
    atoms.set_constraint(constraints)
    
    #dyn     =   BFGS(atoms, trajectory = 'test.traj')
    #dyn.run(fmax=0.05)
    
    #plot_posits(atoms, edge, bond)
    
    trans_vec   =   trans_atomsKC(atoms.positions[0], edge, bond)
    atoms.translate(trans_vec)
    
    #plot_posits(atoms, edge, bond)
    #exit()
    init_pos    =   atoms.positions.copy()
    r_around    =   init_pos[1]
    
    thetas      =   np.linspace(0, np.pi/3, 61)
    n           =   15
    
    lat_vec1    =   np.array([3./2*bond,  np.sqrt(3)/2*bond, 0.])   
    lat_vec2    =   np.array([3./2*bond, -np.sqrt(3)/2*bond, 0.])
    
    for i, theta in enumerate(thetas):
        fname   =   path + 'corr_%s_theta=%.2f.data' %(edge, theta/(2*np.pi)*360)
        #if not os.path.isfile(fname): 
        print 'Calculating theta = %.2f' %(theta/(2*np.pi)*360)
        atoms.positions =   init_pos
        atoms.rotate([0,0,1], theta, center = r_around)
        
        R               =   np.array([[np.cos(theta), -np.sin(theta), 0.],
                                      [np.sin(theta),  np.cos(theta), 0.],
                                      [0., 0., 1.]])
        
        lat_vec_theta1  =   np.dot(R, lat_vec1.copy())
        lat_vec_theta2  =   np.dot(R, lat_vec2.copy())
                
        #trans_vec1      =   lat_vec_theta1.copy()/n
        trans_vec2      =   lat_vec_theta2.copy()/n
        
        data            =   np.zeros((n,n))
        #plot_posits(atoms, edge, bond, vecs =  [lat_vec_theta1, lat_vec_theta2])
        
        for k in range(n):
            atoms.positions =   init_pos
            atoms.translate(lat_vec_theta1*float(k)/n)
            #plot_posits(atoms, edge, bond, vecs =  [lat_vec_theta1, lat_vec_theta2])
            #print trans_vec1*float(k)/n, k, n, float(k)/n 
            
            for l in range(n):
                atoms.translate(trans_vec2)
                emin, hmin   =   get_optimal_h(atoms, len(atoms), dyn = False)
                #data[k,l,:]  =   [emin, hmin]   
                data[k,l]  =  emin #atoms.get_potential_energy()/len(atoms)
                
        header  =   '%s runs along x-dir, angle measured from x-axis, natoms = %i. x (Angs), e (eV/atom), hmin \n\
the lattice vectors are l1 = [%.5f, %.5f, %.5f] and l2 = [%.5f, %.5f, %.5f], they are divided in %i parts. data[i,j,:] \n\
-> atoms pos += l1/n*i + l2/n*j, initial position is such that atom1 is in middle if hexagon.' \
    %(edge, len(atoms), lat_vec_theta1[0], lat_vec_theta1[1], lat_vec_theta1[2], \
      lat_vec_theta2[0], lat_vec_theta2[1], lat_vec_theta2[2], n)
        np.savetxt(fname, data, header = header)