示例#1
0
文件: fcubeobjs.py 项目: sosey/pyaxe
    def _a_blot_segment_image(self, image_to_blot, tempname, x_excess,
                              y_excess, interp):
        """Blot the segmentation or other nondrizzled image as if it were
        assume self.grism_image is always used as the source wcs reference
        Thats just a simple wrapper around the task blot in astrodrizzle

        Parameters
        ----------
        image_to_blot: str
            the input image name, either the grism or direct drizzled image
        tempname: str
            the name of the output blotted image

        Notes
        -----
        exposure time is hard coded to 1 since it was made from the
        drizzled image and we dont want the id numbers rescaled by the
        exposure time that was used for blotting

        """
        excess_x = 0
        excess_y = 0

        # the drizzle coeff information for adriz is taken
        # from the self.data image
        # use the current data as reference image
        input_image = (self.data).split("[")[0]
        flt_header = fits.getheader(input_image)
        flt_wcs = HSTWCS(self.data)

        # check to see if this is a simple fits or MEF and grab
        # the science information.
        ftype = fileutil.isFits(self.grism_image_name)[1]

        if (ftype is 'mef'):
            grism_wcs = HSTWCS(self.grism_image_name,
                               ext=(str(self.fcube_info["ext_nam"]),
                                    self.fcube_info["ext_ver"]))
        elif (ftype is 'simple'):
            grism_wcs = HSTWCS(self.grism_image_name)
        else:
            return IOError("File type of fits image is not "
                           "supported {0:s}".format(image_to_blot))

        ftype = fileutil.isFits(image_to_blot)[1]
        if (ftype is 'mef'):
            image_data = fits.getdata(image_to_blot,
                                      ext=(str(self.fcube_info["ext_nam"]),
                                           self.fcube_info["ext_ver"]))
        elif (ftype is 'simple'):
            image_data = fits.getdata(image_to_blot)
        else:
            return IOError("Input image is not a supported FITS "
                           "type: {0:s}".format(image_to_blot))

        # edit the wcs header information to add any dim_info shifts that we
        # need the segment image needs to be the same sky area cut without
        # the added pixels
        type(x_excess)
        if x_excess > 0:
            excess_x = int(flt_wcs.naxis1 + x_excess * 2.)
            flt_wcs.naxis1 = excess_x
            crpix = flt_wcs.wcs.crpix
            newx = int(crpix[0]) + x_excess
            flt_wcs.wcs.crpix = np.array([newx, crpix[1]])
            flt_wcs.sip.crpix[0] = newx

        if y_excess > 0:
            excess_y = int(flt_wcs.naxis2 + y_excess * 2.)
            flt_wcs.naxis2 = excess_y
            crpix = flt_wcs.wcs.crpix
            newy = int(crpix[1]) + y_excess
            flt_wcs.wcs.crpix = np.array([int(crpix[0]), newy])
            flt_wcs.sip.crpix[1] = newy

        # returns a numpy.ndarray which is just the data
        outimage = astrodrizzle.ablot.do_blot(image_data.astype(np.float32),
                                              grism_wcs,
                                              flt_wcs,
                                              1.,
                                              interp=interp,
                                              sinscl=1.,
                                              coeffs=True,
                                              wcsmap=None,
                                              stepsize=10)

        # update the flt_header with the flt_wcs information I created
        flt_header['CRPIX1'] = flt_wcs.wcs.crpix[0]
        flt_header['CRPIX2'] = flt_wcs.wcs.crpix[1]

        # if the input flt was an MEF we need to write an MEF out
        try:
            newimage = fits.PrimaryHDU()
            newimage.data = outimage
            newimage.header = flt_header
            newimage.header.update(flt_wcs.to_header())
            newimage.verify('silentfix')
            newimage.writeto(tempname)
        except:
            raise IOError("Problem writing fits image {0:s}".format(tempname))
示例#2
0
文件: fcubeobjs.py 项目: sosey/pyaxe
    def _a_blot_image(self, image_to_blot, tempname, x_excess, y_excess,
                      interp):
        """
        Blot one image.

        Thats just a simple wrapper around the task blot in astrodrizzle

        Parameters
        ----------
        image_to_blot: str
            the input image name, either the grism or direct drizzled image

        tempname: str
            the name of the output blotted image

        """
        # the drizzle coeff information for adriz is taken
        # from the self.data image,
        excess_x = 0
        excess_y = 0

        # use the current data as reference image for output
        # self.data comes from the header of the input grism or flux image
        # and is one of the input images used to make the drizzled
        # image_to_blot
        input_image = (self.data).split("[")[0]
        bunit = fits.getval(image_to_blot, 'BUNIT')

        flt_header = fits.getheader(input_image)
        flt_wcs = HSTWCS(self.data)

        # now look at the image to blot, this is a drizzled image
        ftype = fileutil.isFits(image_to_blot)[1]

        if (ftype == 'mef'):
            blot_wcs = HSTWCS(image_to_blot,
                              ext=(str(self.fcube_info["ext_nam"]),
                                   str(self.fcube_info["ext_ver"])))
            image_data = fits.getdata(image_to_blot,
                                      extname=str(self.fcube_info["ext_nam"]),
                                      extver=int(self.fcube_info["ext_nam"]))

        elif (ftype is 'simple'):
            blot_wcs = HSTWCS(image_to_blot)  # assume simple
            image_data = fits.getdata(image_to_blot)

        else:
            return IOError("File type of fits image is not "
                           "supported {0:s}".format(image_to_blot))

        # edit the wcs header information to add any dim_info shifts that
        # we need, expanding the size of the output image
        # make sure this gets saved to the output extension header.
        # The lambda image will be bigger than the segment image
        if x_excess > 0:
            excess_x = int(flt_wcs.naxis1 + x_excess * 2.)
            flt_wcs.naxis1 = excess_x
            crpix = flt_wcs.wcs.crpix
            newx = int(crpix[0]) + x_excess
            flt_wcs.wcs.crpix = np.array([newx, int(crpix[1])])
            flt_wcs.sip.crpix[0] = newx

        if y_excess > 0:
            excess_y = int(flt_wcs.naxis2 + y_excess * 2.)
            flt_wcs.naxis2 = excess_y
            crpix = flt_wcs.wcs.crpix
            newy = int(crpix[1]) + y_excess
            flt_wcs.wcs.crpix = np.array([int(crpix[0]), newy])
            flt_wcs.sip.crpix[1] = newy

        # outimage is just the data array
        outimage = astrodrizzle.ablot.do_blot(image_data.astype(np.float32),
                                              blot_wcs,
                                              flt_wcs,
                                              1.,
                                              interp=interp,
                                              sinscl=1.,
                                              coeffs=True,
                                              wcsmap=None,
                                              stepsize=10)

        # update the flt_header with the flt_wcs information I created
        flt_header['CRPIX1'] = flt_wcs.wcs.crpix[0]
        flt_header['CRPIX2'] = flt_wcs.wcs.crpix[1]

        try:
            newimage = fits.PrimaryHDU()
            newimage.data = outimage
            newimage.header = flt_header
            newimage.header['BUNIT'] = bunit
            newimage.header.update(flt_wcs.to_header())
            newimage.verify('silentfix')
            newimage.writeto(tempname)
        except:
            raise IOError("Problem writing fits image {0:s}".format(tempname))