示例#1
0
def run():
    # load settings
    parser = argparse.ArgumentParser()
    parser.add_argument('-im', '--filename_mesh', type=str)
    parser.add_argument('-is', '--filename_style', type=str)
    parser.add_argument('-o', '--filename_output', type=str)
    parser.add_argument('-ls', '--lambda_style', type=float, default=1.)
    parser.add_argument('-lc', '--lambda_content', type=float, default=2e9)
    parser.add_argument('-ltv', '--lambda_tv', type=float, default=1e7)
    parser.add_argument('-emax', '--elevation_max', type=float, default=40.)
    parser.add_argument('-emin', '--elevation_min', type=float, default=20.)
    parser.add_argument('-lrv', '--lr_vertices', type=float, default=0.01)
    parser.add_argument('-lrt', '--lr_textures', type=float, default=1.0)
    parser.add_argument('-cd', '--camera_distance', type=float, default=2.732)
    parser.add_argument('-cdn',
                        '--camera_distance_noise',
                        type=float,
                        default=0.1)
    parser.add_argument('-ts', '--texture_size', type=int, default=4)
    parser.add_argument('-lr', '--adam_lr', type=float, default=0.05)
    parser.add_argument('-ab1', '--adam_beta1', type=float, default=0.9)
    parser.add_argument('-ab2', '--adam_beta2', type=float, default=0.999)
    parser.add_argument('-bs', '--batch_size', type=int, default=4)
    parser.add_argument('-im_s', '--image_size', type=int, default=400)
    parser.add_argument('-ni', '--num_iteration', type=int, default=1000)
    parser.add_argument('-g', '--gpu', type=int, default=0)
    args = parser.parse_args()

    # create output directory
    directory_output = os.path.dirname(args.filename_output)
    if not os.path.exists(directory_output):
        os.makedirs(directory_output)

    # setup chainer
    #os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"   # see issue #152
    #os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu)
    chainer.cuda.get_device_from_id(args.gpu).use()
    cp.random.seed(0)
    np.random.seed(0)

    # setup scene
    model = style_transfer_3d.StyleTransferModel(
        filename_mesh=args.filename_mesh,
        filename_style=args.filename_style,
        lambda_style=args.lambda_style,
        lambda_content=args.lambda_content,
        lambda_tv=args.lambda_tv,
        elevation_max=args.elevation_max,
        elevation_min=args.elevation_min,
        lr_vertices=args.lr_vertices,
        lr_textures=args.lr_textures,
        camera_distance=args.camera_distance,
        camera_distance_noise=args.camera_distance_noise,
        texture_size=args.texture_size,
        image_size=args.image_size)
    model.to_gpu()
    optimizer = neural_renderer.Adam(alpha=args.adam_lr, beta1=args.adam_beta1)
    optimizer.setup(model)

    # optimization
    #import pdb
    #pdb.set_trace()
    loop = tqdm.tqdm(range(args.num_iteration))
    for _ in loop:
        optimizer.target.cleargrads()
        loss = model(args.batch_size)
        loss.backward()
        optimizer.update()
        loop.set_description('Optimizing. Loss %.4f' % loss.data)

    # save obj
    ##pdb.set_trace()
    #model.textures_1 = chainer.functions.concat((model.mesh.textures, model.mesh.textures.transpose((0, 1, 4, 3, 2, 5))), axis=1)
    ##model.textures_1 = chainer.functions.concat((model.mesh.textures, model.mesh.textures), axis=1)
    #obj_fn = args.filename_output.split('/')[-1].split('.')[0]
    #output_directory = os.path.split(args.filename_output)[0]#'/'.join(args.filename_output.split('/')[-3:-1])
    ##neural_renderer.save_obj('%s/%s.obj'% (output_directory,obj_fn), model.mesh.vertices, model.mesh.faces, chainer.functions.tanh(model.textures_1).array)
    #neural_renderer.save_obj('%s/%s.obj'% (output_directory,obj_fn), model.mesh.vertices[0], model.mesh.faces[0], chainer.functions.tanh(model.textures_1[0]).array)
    #
    vertices, faces, textures = model.mesh.get_batch(args.batch_size)
    ## fill back
    textures_1 = chainer.functions.concat(
        (textures, textures.transpose((0, 1, 4, 3, 2, 5))), axis=1)
    faces_1 = chainer.functions.concat((faces, faces[:, :, ::-1]), axis=1).data
    #
    obj_fn = args.filename_output.split('/')[-1].split('.')[0]
    output_directory = os.path.split(args.filename_output)[
        0]  #'/'.join(args.filename_output.split('/')[-3:-1])
    #neural_renderer.save_obj('%s/%s.obj'% (output_directory,obj_fn), model.mesh.vertices.array, model.mesh.faces, model.mesh.textures.array)
    neural_renderer.save_obj('%s/%s.obj' % (output_directory, obj_fn),
                             vertices[0], faces[0], textures[0].array)
    #neural_renderer.save_obj('%s/%s.obj'% (output_directory,obj_fn), model.mesh.vertices[0], model.mesh.faces[0], chainer.functions.tanh(model.textures_1[0]).array)

    # draw object
    model.renderer.background_color = (1, 1, 1)
    #model.renderer.background_color = (0, 0, 0)
    loop = tqdm.tqdm(range(0, 360, 4))
    for num, azimuth in enumerate(loop):
        loop.set_description('Drawing')
        model.renderer.eye = neural_renderer.get_points_from_angles(
            2.732, 30, azimuth)
        images = model.renderer.render(*model.mesh.get_batch(1))
        image = images.data.get()[0].transpose((1, 2, 0))
        scipy.misc.toimage(image, cmin=0, cmax=1).save('%s/_tmp_%04d.png' %
                                                       (directory_output, num))
    make_gif(directory_output, args.filename_output)
示例#2
0
def run():
    # load settings
    parser = argparse.ArgumentParser()
    parser.add_argument('-im', '--filename_mesh', type=str)
    parser.add_argument('-is', '--filename_style', type=str)
    parser.add_argument('-o', '--filename_output', type=str)
    parser.add_argument('-ls', '--lambda_style', type=float, default=1)
    parser.add_argument('-lc', '--lambda_content', type=float, default=1e5)
    parser.add_argument('-ltv', '--lambda_tv', type=float, default=1e2)
    parser.add_argument('-emax', '--elevation_max', type=float, default=40.)
    parser.add_argument('-emin', '--elevation_min', type=float, default=20.)
    parser.add_argument('-lrv', '--lr_vertices', type=float, default=0.1)
    parser.add_argument('-lrt', '--lr_textures', type=float, default=0.001)
    parser.add_argument('-cd', '--camera_distance', type=float, default=2.732)
    parser.add_argument('-cdn',
                        '--camera_distance_noise',
                        type=float,
                        default=0.1)
    parser.add_argument('-ts', '--texture_size', type=int, default=4)
    parser.add_argument('-lr', '--adam_lr', type=float, default=0.05)
    parser.add_argument('-ab1', '--adam_beta1', type=float, default=0.5)
    parser.add_argument('-ab2', '--adam_beta2', type=float, default=0.999)
    parser.add_argument('-bs', '--batch_size', type=int, default=4)
    parser.add_argument('-ni', '--num_iteration', type=int, default=100)
    parser.add_argument('-g', '--gpu', type=int, default=0)
    args = parser.parse_args()

    # create output directory
    directory_output = os.path.dirname(args.filename_output)
    if not os.path.exists(directory_output):
        os.makedirs(directory_output)

    np.random.seed(0)

    # setup scene
    model = style_transfer_3d.StyleTransferModel(
        filename_mesh=args.filename_mesh,
        filename_style=args.filename_style,
        lambda_style=args.lambda_style,
        lambda_content=args.lambda_content,
        lambda_tv=args.lambda_tv,
        elevation_max=args.elevation_max,
        elevation_min=args.elevation_min,
        lr_vertices=args.lr_vertices,
        lr_textures=args.lr_textures,
        camera_distance=args.camera_distance,
        camera_distance_noise=args.camera_distance_noise,
        texture_size=args.texture_size,
    )
    optimizer = torch.optim.Adam([{
        'params': model.vertices,
        'lr': args.lr_vertices
    }, {
        'params': model.textures,
        'lr': args.lr_textures
    }],
                                 betas=(args.adam_beta1, args.adam_beta2))
    # optimization
    loop = tqdm.tqdm(range(args.num_iteration))
    for _ in loop:
        optimizer.zero_grad()
        loss = model(args.batch_size)
        loss.backward()
        optimizer.step()
        loop.set_description('Optimizing. Loss %.4f' % loss.data)

    # draw object
    #model.renderer.background_color = (1, 1, 1)
    loop = tqdm.tqdm(range(0, 360, 4))
    output_images = []
    for num, azimuth in enumerate(loop):
        loop.set_description('Drawing')
        model.renderer.eye = neural_renderer.get_points_from_angles(
            2.732, 30, azimuth)

        images, _, _ = model.renderer.render(
            model.vertices.to(device), model.faces.to(device),
            torch.tanh(model.textures.to(device)))
        image = images.detach().cpu().numpy()[0].transpose((1, 2, 0))
        imsave('/tmp/_tmp_%04d.png' % num, image)
    make_gif(args.filename_output)
示例#3
0
def run():
    # load settings
    parser = argparse.ArgumentParser()
    parser.add_argument('-im', '--filename_mesh', type=str)
    parser.add_argument('-is', '--filename_style', type=str)
    parser.add_argument('-o', '--filename_output', type=str)
    parser.add_argument('-ls', '--lambda_style', type=float, default=1.)
    parser.add_argument('-lc', '--lambda_content', type=float, default=2e9)
    parser.add_argument('-ltv', '--lambda_tv', type=float, default=1e7)
    parser.add_argument('-emax', '--elevation_max', type=float, default=40.)
    parser.add_argument('-emin', '--elevation_min', type=float, default=20.)
    parser.add_argument('-lrv', '--lr_vertices', type=float, default=0.01)
    parser.add_argument('-lrt', '--lr_textures', type=float, default=1.0)
    parser.add_argument('-cd', '--camera_distance', type=float, default=2.732)
    parser.add_argument('-cdn',
                        '--camera_distance_noise',
                        type=float,
                        default=0.1)
    parser.add_argument('-ts', '--texture_size', type=int, default=4)
    parser.add_argument('-lr', '--adam_lr', type=float, default=0.05)
    parser.add_argument('-ab1', '--adam_beta1', type=float, default=0.9)
    parser.add_argument('-ab2', '--adam_beta2', type=float, default=0.999)
    parser.add_argument('-bs', '--batch_size', type=int, default=4)
    parser.add_argument('-ni', '--num_iteration', type=int, default=1000)
    parser.add_argument('-g', '--gpu', type=int, default=0)
    args = parser.parse_args()

    # create output directory
    directory_output = os.path.dirname(args.filename_output)
    if not os.path.exists(directory_output):
        os.makedirs(directory_output)

    # setup chainer
    chainer.cuda.get_device_from_id(args.gpu).use()
    cp.random.seed(0)
    np.random.seed(0)

    # setup scene
    model = style_transfer_3d.StyleTransferModel(
        filename_mesh=args.filename_mesh,
        filename_style=args.filename_style,
        lambda_style=args.lambda_style,
        lambda_content=args.lambda_content,
        lambda_tv=args.lambda_tv,
        elevation_max=args.elevation_max,
        elevation_min=args.elevation_min,
        lr_vertices=args.lr_vertices,
        lr_textures=args.lr_textures,
        camera_distance=args.camera_distance,
        camera_distance_noise=args.camera_distance_noise,
        texture_size=args.texture_size,
    )
    model.to_gpu()
    optimizer = neural_renderer.Adam(alpha=args.adam_lr, beta1=args.adam_beta1)
    optimizer.setup(model)

    # optimization
    loop = tqdm.tqdm(range(args.num_iteration))
    for _ in loop:
        optimizer.target.cleargrads()
        loss = model(args.batch_size)
        loss.backward()
        optimizer.update()
        loop.set_description('Optimizing. Loss %.4f' % loss.data)

    # draw object
    model.renderer.background_color = (1, 1, 1)
    loop = tqdm.tqdm(range(0, 360, 4))
    for num, azimuth in enumerate(loop):
        loop.set_description('Drawing')
        model.renderer.eye = neural_renderer.get_points_from_angles(
            2.732, 30, azimuth)
        images = model.renderer.render(*model.mesh.get_batch(1))
        image = images.data.get()[0].transpose((1, 2, 0))
        scipy.misc.toimage(image, cmin=0, cmax=1).save('%s/_tmp_%04d.png' %
                                                       (directory_output, num))
    make_gif(directory_output, args.filename_output)
    print(model.getLosses())